找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Geometry and Topology of Singularities III; José Luis Cisneros-Molina,Lê D?ng Tráng,José Seade Book 2022 Springer Nature Switz

[復(fù)制鏈接]
樓主: 烹飪
21#
發(fā)表于 2025-3-25 06:57:38 | 只看該作者
22#
發(fā)表于 2025-3-25 10:20:44 | 只看該作者
Residues and Hyperfunctions,e cohomology of the sheaf of holomorphic forms. As an application, we give explicit expressions of Sato hyperfunctions and related operations including the embedding of the space of real analytic functions into that of hyperfunctions, where as well the Thom class plays an important role.
23#
發(fā)表于 2025-3-25 12:53:11 | 只看該作者
Segre Classes and Invariants of Singular Varieties,s of characteristic classes for singular varieties, and on classes of Lê cycles. We precede the main discussion with a review of relevant background notions in algebraic geometry and intersection theory.
24#
發(fā)表于 2025-3-25 16:51:47 | 只看該作者
Mixed Hodge Structures Applied to Singularities,ology of the Milnor fibre possible. The approaches by algebraic analysis and by motivic integration are discussed, and the spectrum with its properties is considered. The paper ends with a treatment of Du Bois singularities.
25#
發(fā)表于 2025-3-25 22:51:01 | 只看該作者
Handbook of Geometry and Topology of Singularities III
26#
發(fā)表于 2025-3-26 04:03:11 | 只看該作者
27#
發(fā)表于 2025-3-26 06:31:49 | 只看該作者
28#
發(fā)表于 2025-3-26 10:17:42 | 只看該作者
29#
發(fā)表于 2025-3-26 14:02:59 | 只看該作者
30#
發(fā)表于 2025-3-26 18:53:06 | 只看該作者
Constructible Sheaf Complexes in Complex Geometry and Applications,f characteristic cycles of constructible functions, and to weak Lefschetz and Artin-Grothendieck type theorems. We recall the construction of Deligne’s nearby and vanishing cycle functors, prove that they preserve constructible complexes, and discuss their relation with the perverse t-structure. We
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿勒泰市| 平塘县| 瓮安县| 柘城县| 玉树县| 依安县| 名山县| 若羌县| 鸡西市| 永靖县| 中西区| 丹江口市| 崇仁县| 江陵县| 靖宇县| 博白县| 鄢陵县| 唐河县| 大兴区| 迭部县| 会同县| 娄烦县| 阿鲁科尔沁旗| 榕江县| 武夷山市| 乡城县| 松溪县| 泰州市| 石景山区| 安国市| 巴塘县| 玉田县| 丁青县| 福州市| 宣化县| 双鸭山市| 广平县| 高要市| 广元市| 卢龙县| 古交市|