找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Geometry and Topology of Singularities III; José Luis Cisneros-Molina,Lê D?ng Tráng,José Seade Book 2022 Springer Nature Switz

[復(fù)制鏈接]
樓主: 烹飪
21#
發(fā)表于 2025-3-25 06:57:38 | 只看該作者
22#
發(fā)表于 2025-3-25 10:20:44 | 只看該作者
Residues and Hyperfunctions,e cohomology of the sheaf of holomorphic forms. As an application, we give explicit expressions of Sato hyperfunctions and related operations including the embedding of the space of real analytic functions into that of hyperfunctions, where as well the Thom class plays an important role.
23#
發(fā)表于 2025-3-25 12:53:11 | 只看該作者
Segre Classes and Invariants of Singular Varieties,s of characteristic classes for singular varieties, and on classes of Lê cycles. We precede the main discussion with a review of relevant background notions in algebraic geometry and intersection theory.
24#
發(fā)表于 2025-3-25 16:51:47 | 只看該作者
Mixed Hodge Structures Applied to Singularities,ology of the Milnor fibre possible. The approaches by algebraic analysis and by motivic integration are discussed, and the spectrum with its properties is considered. The paper ends with a treatment of Du Bois singularities.
25#
發(fā)表于 2025-3-25 22:51:01 | 只看該作者
Handbook of Geometry and Topology of Singularities III
26#
發(fā)表于 2025-3-26 04:03:11 | 只看該作者
27#
發(fā)表于 2025-3-26 06:31:49 | 只看該作者
28#
發(fā)表于 2025-3-26 10:17:42 | 只看該作者
29#
發(fā)表于 2025-3-26 14:02:59 | 只看該作者
30#
發(fā)表于 2025-3-26 18:53:06 | 只看該作者
Constructible Sheaf Complexes in Complex Geometry and Applications,f characteristic cycles of constructible functions, and to weak Lefschetz and Artin-Grothendieck type theorems. We recall the construction of Deligne’s nearby and vanishing cycle functors, prove that they preserve constructible complexes, and discuss their relation with the perverse t-structure. We
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
信丰县| 大邑县| 修水县| 彝良县| 永登县| 旬阳县| 云南省| 高密市| 洛浦县| 随州市| 正定县| 遂宁市| 巴东县| 南岸区| 景泰县| 塔河县| 青岛市| 获嘉县| 卢湾区| 锡林浩特市| 永修县| 五大连池市| 万山特区| 台前县| 扎赉特旗| 和龙市| 读书| 襄城县| 祁连县| 紫金县| 蓬莱市| 饶平县| 永和县| 鲁甸县| 涟水县| 昭平县| 青铜峡市| 德化县| 新干县| 读书| 大埔区|