找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Functional Equations; Functional Inequalit Themistocles M. Rassias Book 2014 Springer Science+Business Media, LLC 2014 Cauchy e

[復制鏈接]
樓主: ED431
11#
發(fā)表于 2025-3-23 12:04:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:15:09 | 只看該作者
13#
發(fā)表于 2025-3-23 18:33:05 | 只看該作者
,On a Relation Between the Hardy–Hilbert and Gabriel Inequalities,quality. As an application, we obtain a sharper form of the general Hardy-Hilbert inequality. The integral analogues of our main results are also given. Some Gabriel-type inequalities are also considered.
14#
發(fā)表于 2025-3-24 01:50:13 | 只看該作者
Multiplicative Ostrowski and Trapezoid Inequalities,an in the following sense:.We consider the cases of absolutely continuous and logarithmic convex functions. We apply these inequalities to provide approximations for the integral of .; and the first moment of . around zero, that is, .; for an absolutely continuous function . on [.].
15#
發(fā)表于 2025-3-24 03:03:32 | 只看該作者
Invariance in the Family of Weighted Gini Means, method of series expansion of means to determine the complementary with respect to a weighted Gini mean. The invariance in the family of weighted Gini means is also studied. The computer algebra Maple was used for solving some complicated systems of equations.
16#
發(fā)表于 2025-3-24 06:35:04 | 只看該作者
Comparisons of Means and Related Functional Inequalities,s in this field which according to the best of author’s knowledge remain open. Last section of this paper is devoted to a new, more general functional inequality and a joint generalization of several earlier results is obtained.
17#
發(fā)表于 2025-3-24 13:17:20 | 只看該作者
18#
發(fā)表于 2025-3-24 17:25:31 | 只看該作者
19#
發(fā)表于 2025-3-24 21:33:12 | 只看該作者
20#
發(fā)表于 2025-3-25 01:11:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
寿阳县| 库尔勒市| 大名县| 洪雅县| 禄丰县| 来宾市| 乐昌市| 北川| 嘉禾县| 凉城县| 交城县| 马关县| 霍林郭勒市| 东乌珠穆沁旗| 新和县| 广南县| 宕昌县| 齐齐哈尔市| 柳林县| 天长市| 龙川县| 甘德县| 科技| 中阳县| 德惠市| 九台市| 珲春市| 罗平县| 庆阳市| 宜兰市| 沁水县| 寿阳县| 甘谷县| 台南县| 渭南市| 中宁县| 南涧| 南投县| 大方县| 麻栗坡县| 萨嘎县|