找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Evolutionary Machine Learning; Wolfgang Banzhaf,Penousal Machado,Mengjie Zhang Book 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 20586|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:33:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Handbook of Evolutionary Machine Learning
編輯Wolfgang Banzhaf,Penousal Machado,Mengjie Zhang
視頻videohttp://file.papertrans.cn/422/421300/421300.mp4
概述Explores various ways evolution can help improve current methods of machine learning.Presents real-world applications in medicine, robotics, science, finance, and other domains.Serves as an essential
叢書名稱Genetic and Evolutionary Computation
圖書封面Titlebook: Handbook of Evolutionary Machine Learning;  Wolfgang Banzhaf,Penousal Machado,Mengjie Zhang Book 2024 The Editor(s) (if applicable) and The
描述This book, written by leading international researchers of evolutionary approaches to machine learning, explores various ways evolution can address machine learning problems and improve current methods of machine learning. Topics in this book are organized into five parts. The first part introduces some fundamental concepts and overviews of evolutionary approaches to the three different classes of learning employed in machine learning. The second addresses the use of evolutionary computation as a machine learning technique describing methodologic improvements for evolutionary clustering, classification, regression, and ensemble learning. The third part explores the connection between evolution and neural networks, in particular the connection to deep learning, generative and adversarial models as well as the exciting potential of evolution with large language models. The fourth part focuses on the use of evolutionary computation for supporting machine learning methods. This includes methodological developments for evolutionary data preparation, model parametrization, design, and validation. The final part covers several chapters on applications in medicine, robotics, science, finan
出版日期Book 2024
關(guān)鍵詞Machine Learning; Artificial Evolution; Data Analysis; Evolutionary Deep Learning; Evolutionary Feature
版次1
doihttps://doi.org/10.1007/978-981-99-3814-8
isbn_softcover978-981-99-3816-2
isbn_ebook978-981-99-3814-8Series ISSN 1932-0167 Series E-ISSN 1932-0175
issn_series 1932-0167
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Handbook of Evolutionary Machine Learning影響因子(影響力)




書目名稱Handbook of Evolutionary Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Handbook of Evolutionary Machine Learning網(wǎng)絡(luò)公開度




書目名稱Handbook of Evolutionary Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Handbook of Evolutionary Machine Learning被引頻次




書目名稱Handbook of Evolutionary Machine Learning被引頻次學(xué)科排名




書目名稱Handbook of Evolutionary Machine Learning年度引用




書目名稱Handbook of Evolutionary Machine Learning年度引用學(xué)科排名




書目名稱Handbook of Evolutionary Machine Learning讀者反饋




書目名稱Handbook of Evolutionary Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:20:20 | 只看該作者
Wolfgang Banzhaf,Penousal Machado,Mengjie ZhangExplores various ways evolution can help improve current methods of machine learning.Presents real-world applications in medicine, robotics, science, finance, and other domains.Serves as an essential
板凳
發(fā)表于 2025-3-22 03:48:16 | 只看該作者
地板
發(fā)表于 2025-3-22 06:51:37 | 只看該作者
978-981-99-3816-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
5#
發(fā)表于 2025-3-22 11:25:49 | 只看該作者
Handbook of Evolutionary Machine Learning978-981-99-3814-8Series ISSN 1932-0167 Series E-ISSN 1932-0175
6#
發(fā)表于 2025-3-22 16:26:42 | 只看該作者
7#
發(fā)表于 2025-3-22 19:32:51 | 只看該作者
Fundamentals of Evolutionary Machine Learningrstand evolutionary machine learning. Then we take a look at its roots, finding that it has quite a long history, going back to the 1950s. We introduce a taxonomy of the field, discuss the major branches of evolutionary machine learning, and conclude by outlining open problems.
8#
發(fā)表于 2025-3-22 22:35:06 | 只看該作者
Eberhard Schaich,Alfred HamerleThis chapter provides an overview of evolutionary approaches to supervised learning. It starts with the definition and scope of the opportunity, and then reviews three main areas: evolving general neural network designs, evolving solutions that are explainable, and forming a synergy of evolutionary and gradient-based methods.
9#
發(fā)表于 2025-3-23 05:08:20 | 只看該作者
10#
發(fā)表于 2025-3-23 06:50:16 | 只看該作者
1932-0167 science, finance, and other domains.Serves as an essential This book, written by leading international researchers of evolutionary approaches to machine learning, explores various ways evolution can address machine learning problems and improve current methods of machine learning. Topics in this bo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渝中区| 德安县| 大埔区| SHOW| 连南| 九台市| 钟祥市| 民勤县| 开原市| 清丰县| 金溪县| 迁西县| 洱源县| 松原市| 上思县| 株洲县| 长寿区| 景德镇市| 桐乡市| 柳林县| 西昌市| 神木县| 团风县| 隆尧县| 宜州市| 南昌县| 景泰县| 富锦市| 林周县| 大洼县| 长垣县| 阳高县| 蓬莱市| 昌都县| 高清| 任丘市| 东宁县| 明水县| 福清市| 同江市| 灵丘县|