找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Deep Learning Applications; Valentina Emilia Balas,Sanjiban Sekhar Roy,Pijush Book 2019 Springer Nature Switzerland AG 2019 D

[復制鏈接]
查看: 44470|回復: 61
樓主
發(fā)表于 2025-3-21 18:45:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Handbook of Deep Learning Applications
編輯Valentina Emilia Balas,Sanjiban Sekhar Roy,Pijush
視頻videohttp://file.papertrans.cn/422/421137/421137.mp4
概述Provides a concise and structured presentation of deep learning applications.Introduces a large range of applications related to vision, speech, and natural language processing.Includes active researc
叢書名稱Smart Innovation, Systems and Technologies
圖書封面Titlebook: Handbook of Deep Learning Applications;  Valentina Emilia Balas,Sanjiban Sekhar Roy,Pijush  Book 2019 Springer Nature Switzerland AG 2019 D
描述.This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars..
出版日期Book 2019
關(guān)鍵詞Deep Machine Learning; Deep Neural Network; Deep Belief Network; Restricted Boltzmann Machine; Convoluti
版次1
doihttps://doi.org/10.1007/978-3-030-11479-4
isbn_ebook978-3-030-11479-4Series ISSN 2190-3018 Series E-ISSN 2190-3026
issn_series 2190-3018
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Handbook of Deep Learning Applications影響因子(影響力)




書目名稱Handbook of Deep Learning Applications影響因子(影響力)學科排名




書目名稱Handbook of Deep Learning Applications網(wǎng)絡(luò)公開度




書目名稱Handbook of Deep Learning Applications網(wǎng)絡(luò)公開度學科排名




書目名稱Handbook of Deep Learning Applications被引頻次




書目名稱Handbook of Deep Learning Applications被引頻次學科排名




書目名稱Handbook of Deep Learning Applications年度引用




書目名稱Handbook of Deep Learning Applications年度引用學科排名




書目名稱Handbook of Deep Learning Applications讀者反饋




書目名稱Handbook of Deep Learning Applications讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:39:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:52:58 | 只看該作者
地板
發(fā)表于 2025-3-22 07:59:14 | 只看該作者
5#
發(fā)表于 2025-3-22 09:20:30 | 只看該作者
Studien zur Kommunikationswissenschaftdeling. Deep learning models are efficient feature selectors and therefore work best in high dimension datasets. We present major research challenges in feature extraction and selection using different deep models. Our case studies are drawn from gene expression datasets. Hence we report some of the
6#
發(fā)表于 2025-3-22 16:01:50 | 只看該作者
Deep Learning for Document Representation,d sparse. This sparsity and the need to ensure semantic understanding of text documents are the major challenges in text categorization. Deep learning-based approaches provide a fixed length vector in a continuous space to represent words and documents. This chapter reviews the available document re
7#
發(fā)表于 2025-3-22 20:46:07 | 只看該作者
Phase Identification and Workflow Modeling in Laparoscopy Surgeries Using Temporal Connectionism ofcene captured by the laparoscopic camera poses additional challenges. These challenges can be overcome by using temporal features in addition to the spatial visual features. A long short-term memory (LSTM) network is used to learn the temporal information of the video. The m2cai16-workflow dataset c
8#
發(fā)表于 2025-3-22 22:19:28 | 只看該作者
9#
發(fā)表于 2025-3-23 03:15:05 | 只看該作者
10#
發(fā)表于 2025-3-23 09:18:07 | 只看該作者
Valentina Emilia Balas,Sanjiban Sekhar Roy,Pijush Provides a concise and structured presentation of deep learning applications.Introduces a large range of applications related to vision, speech, and natural language processing.Includes active researc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 16:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
文昌市| 宁海县| 尤溪县| 濉溪县| 工布江达县| 莱芜市| 高阳县| 曲松县| 霞浦县| 荆州市| 凌云县| 台北市| 乌海市| 高青县| 木兰县| 全南县| 云林县| 濮阳县| 安福县| 凤台县| 浪卡子县| 新邵县| 德格县| 桂阳县| 河池市| 永修县| 通河县| 黑龙江省| 长兴县| 建水县| 大同市| 榆树市| 永年县| 图木舒克市| 崇明县| 博客| 来凤县| 龙胜| 龙门县| 阜新市| 射阳县|