找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Computational Statistics; Concepts and Methods James E. Gentle,Wolfgang Karl H?rdle,Yuichi Mori Book 2012Latest edition Springe

[復制鏈接]
查看: 28903|回復: 60
樓主
發(fā)表于 2025-3-21 17:27:47 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Handbook of Computational Statistics
副標題Concepts and Methods
編輯James E. Gentle,Wolfgang Karl H?rdle,Yuichi Mori
視頻videohttp://file.papertrans.cn/422/421078/421078.mp4
概述Up-to-date coverage of the topic.First-rate authors contribute to the volume.The editors have been involved in this research area from the beginning and have all given substantial imput to its develop
叢書名稱Springer Handbooks of Computational Statistics
圖書封面Titlebook: Handbook of Computational Statistics; Concepts and Methods James E. Gentle,Wolfgang Karl H?rdle,Yuichi Mori Book 2012Latest edition Springe
描述The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Las
出版日期Book 2012Latest edition
關鍵詞Bioinformatics; Computational Statistics; EM algorithm; Functional MRI; MCMC; Network Intrusion Detection
版次2
doihttps://doi.org/10.1007/978-3-642-21551-3
isbn_softcover978-3-662-51765-9
isbn_ebook978-3-642-21551-3Series ISSN 2197-9790 Series E-ISSN 2197-9804
issn_series 2197-9790
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書目名稱Handbook of Computational Statistics影響因子(影響力)




書目名稱Handbook of Computational Statistics影響因子(影響力)學科排名




書目名稱Handbook of Computational Statistics網(wǎng)絡公開度




書目名稱Handbook of Computational Statistics網(wǎng)絡公開度學科排名




書目名稱Handbook of Computational Statistics被引頻次




書目名稱Handbook of Computational Statistics被引頻次學科排名




書目名稱Handbook of Computational Statistics年度引用




書目名稱Handbook of Computational Statistics年度引用學科排名




書目名稱Handbook of Computational Statistics讀者反饋




書目名稱Handbook of Computational Statistics讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:20:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:55:29 | 只看該作者
https://doi.org/10.1007/978-1-4613-1749-496). MCMC methods have proved useful in practically all aspects of Bayesian inference, for example, in the context of prediction problems and in the computation of quantities, such as the marginal likelihood, that are used for comparing competing Bayesian models.
地板
發(fā)表于 2025-3-22 05:08:25 | 只看該作者
5#
發(fā)表于 2025-3-22 10:41:56 | 只看該作者
Markov Chain Monte Carlo Technology96). MCMC methods have proved useful in practically all aspects of Bayesian inference, for example, in the context of prediction problems and in the computation of quantities, such as the marginal likelihood, that are used for comparing competing Bayesian models.
6#
發(fā)表于 2025-3-22 14:10:26 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:31 | 只看該作者
https://doi.org/10.1007/978-3-642-21551-3Bioinformatics; Computational Statistics; EM algorithm; Functional MRI; MCMC; Network Intrusion Detection
8#
發(fā)表于 2025-3-22 22:12:22 | 只看該作者
9#
發(fā)表于 2025-3-23 04:21:30 | 只看該作者
10#
發(fā)表于 2025-3-23 09:34:07 | 只看該作者
Yoshio Yotsuyanagi,Daniel Sz?ll?siression reduces to solving a system of linear equations, see Chap. III.8. Theprincipal components method is based on finding eigenvalues and eigenvectors of a matrix, see Chap. III.6. Nonlinear optimization methods such as Newton’s method often employ the inversion of a Hessian matrix. In all these cases, we neednumerical linear algebra.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
旬邑县| 峨山| 苏州市| 舞阳县| 湘乡市| 洛阳市| 康乐县| 灵川县| 乌海市| 吉林市| 弋阳县| 故城县| 开封市| 孟津县| 阳山县| 紫阳县| 元江| 河津市| 大丰市| 柘荣县| 镇江市| 文化| 张家川| 丽江市| 锡林浩特市| 江油市| 香河县| 北宁市| 黔西县| 方城县| 张家川| 柳州市| 娄烦县| 施甸县| 临猗县| 巨野县| 信宜市| 朝阳市| 枞阳县| 小金县| 彝良县|