找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Complex Variables; Steven G. Krantz Book 1999 Springer Science+Business Media New York 1999 Argument principle.Blaschke produc

[復(fù)制鏈接]
樓主: architect
31#
發(fā)表于 2025-3-26 23:01:16 | 只看該作者
Business Objectives vs. User Goals,have intrinsic interest. These functions are usually termed .. In this chapter we shall treat three of these which arise naturally in complex analysis: the gamma function of Euler, the beta function of Legendre, and the ζ(or zeta) function of Riemann.
32#
發(fā)表于 2025-3-27 02:15:54 | 只看該作者
33#
發(fā)表于 2025-3-27 07:12:19 | 只看該作者
Harmonic Functions,al equation known as .:.(Of course the imaginary part y satisfies the same equation.) In this chapter we shall study systematically those . functions that satisfy this equation. They are called .. (Note that we encountered some of these ideas already in §1.4.)
34#
發(fā)表于 2025-3-27 11:53:59 | 只看該作者
35#
發(fā)表于 2025-3-27 15:05:06 | 只看該作者
36#
發(fā)表于 2025-3-27 20:19:39 | 只看該作者
Special Functions,have intrinsic interest. These functions are usually termed .. In this chapter we shall treat three of these which arise naturally in complex analysis: the gamma function of Euler, the beta function of Legendre, and the ζ(or zeta) function of Riemann.
37#
發(fā)表于 2025-3-28 01:53:23 | 只看該作者
Applications that Depend on Conformal Mapping,Often we take . to be a standard domain such as the disc.or the upper half plane.Particularly in the study of partial differential equations, it is important to have an . conformal mapping between the two domains. In the Appendix to this chapter we give a compendium of conformal mappings of some of the most frequently encountered planar regions.
38#
發(fā)表于 2025-3-28 05:25:22 | 只看該作者
Book 1999hat reader who has had a course in complex analysis at some time in his life. This book is a handy com- pendium of all basic facts about complex variable theory. But it is not a textbook, and a person would be hard put to endeavor to learn the subject by reading this book.
39#
發(fā)表于 2025-3-28 06:54:05 | 只看該作者
40#
發(fā)表于 2025-3-28 11:33:50 | 只看該作者
The Geometric Theory of Holomorphic Functions,unction is called a . (or . mapping. The fact that . is supposed to be one-to-one implies that . is nowhere zero on . [remember that if . vanishes to order . ≥ 0 at a point . ∈ ., then . is (.+1)-to-1 in a small neighborhood of P—see §§5.2.1]. As a result, h.: . . is also holomorphic—as we discussed
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和硕县| 邵东县| 闻喜县| 灵山县| 华亭县| 防城港市| 祁阳县| 礼泉县| 阿鲁科尔沁旗| 英吉沙县| 通化市| 屯昌县| 鄂尔多斯市| 彩票| 巴彦县| 大连市| 江山市| 邵阳县| 上蔡县| 莱阳市| 济源市| 鄂托克前旗| 隆回县| 永济市| 喀什市| 循化| 措美县| 韶关市| 乌兰县| 闵行区| 郓城县| 甘洛县| 德钦县| 黑河市| 铜川市| 名山县| 乐陵市| 惠州市| 九寨沟县| 修水县| 兖州市|