找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Big Data Technologies; Albert Y. Zomaya,Sherif Sakr Book 2017 Springer International Publishing AG 2017 Big Data.MapReduce.Had

[復(fù)制鏈接]
查看: 49503|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:31:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Handbook of Big Data Technologies
編輯Albert Y. Zomaya,Sherif Sakr
視頻videohttp://file.papertrans.cn/421/420873/420873.mp4
概述Provides essential reader insight into the vast potential power and value of Big Data resources.Offers the reader a comprehensive examination of Big Data technologies.Inspects both theoretical and pra
圖書封面Titlebook: Handbook of Big Data Technologies;  Albert Y. Zomaya,Sherif Sakr Book 2017 Springer International Publishing AG 2017 Big Data.MapReduce.Had
描述This handbook offers comprehensive coverage of recent advancements in Big Data technologies and related paradigms. ?Chapters are authored by international leading experts in the field, and have been reviewed and revised for maximum reader value. The volume consists of twenty-five chapters organized into four main parts. Part one covers the fundamental concepts of Big Data technologies including data curation mechanisms, data models, storage models, programming models and programming platforms. It also dives into the details of implementing Big SQL query engines and big stream processing systems. ?Part Two focuses on the semantic aspects of Big Data management including data integration and exploratory ad hoc analysis in addition to structured querying and pattern matching techniques. ?Part Three presents a comprehensive overview of large scale graph processing. It covers the most recent research in large scale graph processing platforms, introducing several scalablegraph querying and mining mechanisms in domains such as social networks. ?Part Four details novel applications that have been made possible by the rapid emergence of Big Data technologies such as Internet-of-Things (IOT)
出版日期Book 2017
關(guān)鍵詞Big Data; MapReduce; Hadoop; Spark; Big graph analytics; Data analytics; Big SQL; Big Data applications; Gir
版次1
doihttps://doi.org/10.1007/978-3-319-49340-4
isbn_softcover978-3-319-84138-0
isbn_ebook978-3-319-49340-4
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Handbook of Big Data Technologies影響因子(影響力)




書目名稱Handbook of Big Data Technologies影響因子(影響力)學(xué)科排名




書目名稱Handbook of Big Data Technologies網(wǎng)絡(luò)公開(kāi)度




書目名稱Handbook of Big Data Technologies網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Handbook of Big Data Technologies被引頻次




書目名稱Handbook of Big Data Technologies被引頻次學(xué)科排名




書目名稱Handbook of Big Data Technologies年度引用




書目名稱Handbook of Big Data Technologies年度引用學(xué)科排名




書目名稱Handbook of Big Data Technologies讀者反饋




書目名稱Handbook of Big Data Technologies讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:54:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:22:33 | 只看該作者
地板
發(fā)表于 2025-3-22 08:30:44 | 只看該作者
Big Data Analysis on Cloudstorage, process and analysis capabilities. Those data volumes, commonly referred as Big Data, can be exploited to extract useful information and to produce helpful knowledge for science, industry, public services and in general for humankind. Big Data analytics refer to advanced mining techniques ap
5#
發(fā)表于 2025-3-22 09:45:39 | 只看該作者
Data Organization and Curation in Big Data analytics are getting more complex, the advances in big data applications are no longer hindered by their ability to collect or generate data. But instead, by their ability to efficiently and effectively manage the available data. Therefore, numerous scalable and distributed infrastructures have be
6#
發(fā)表于 2025-3-22 13:58:43 | 只看該作者
Big Data Query Enginesare used in several big data applications ranging from the generation of simple reports to running deep and complex query workloads. The insights drawn by running big data analytics depend primarily on the capabilities of the underlying query engine, which is responsible for translating user queries
7#
發(fā)表于 2025-3-22 21:07:38 | 只看該作者
8#
發(fā)表于 2025-3-22 21:37:15 | 只看該作者
Semantic Data Integrationuly useful, scientists need not only to be able to access it, but also be able to interpret and use it. Doing this requires semantic context. Semantic Data Integration is an active field of research, and this chapter describes the current challenges and how existing approaches are addressing them. T
9#
發(fā)表于 2025-3-23 01:46:33 | 只看該作者
10#
發(fā)表于 2025-3-23 09:24:46 | 只看該作者
Non-native RDF Storage Enginesn be stored according to many different data storage models. Some of these attempt to use general purpose database storage techniques to persist Linked Data, hence they can leverage existing data processing environments (e.g., big Hadoop clusters). We therefore look at the multiplicity of Linked Dat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐边县| 山阴县| 宣化县| 抚顺市| 榆中县| 宿州市| 长阳| 镶黄旗| 浠水县| 和静县| 察雅县| 疏勒县| 泸水县| 中方县| 微山县| 阿尔山市| 奈曼旗| 新疆| 习水县| 绥阳县| 舞阳县| 苏尼特左旗| 河池市| 东海县| 永宁县| 修水县| 武威市| 金华市| 陇川县| 区。| 大厂| 扎赉特旗| 万载县| 勐海县| 鲁甸县| 托里县| 乌兰县| 白朗县| 怀柔区| 阜平县| 论坛|