找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian and Lagrangian Flows on Center Manifolds; with Applications to Alexander Mielke Book 1991 Springer-Verlag Berlin Heidelberg 199

[復(fù)制鏈接]
查看: 44590|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:16:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Hamiltonian and Lagrangian Flows on Center Manifolds
副標(biāo)題with Applications to
編輯Alexander Mielke
視頻videohttp://file.papertrans.cn/421/420642/420642.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Hamiltonian and Lagrangian Flows on Center Manifolds; with Applications to Alexander Mielke Book 1991 Springer-Verlag Berlin Heidelberg 199
描述The theory of center manifold reduction is studied in thismonograph in the context of (infinite-dimensional) Hamil-tonian and Lagrangian systems. The aim is to establish a"natural reduction method" for Lagrangian systems totheircenter manifolds. Nonautonomous problems are considered aswell assystems invariant under the action of a Lie group (including the case of relative equilibria).The theory is applied to elliptic variational problemsoncylindrical domains. As a result, all bounded solutionsbifurcatingfrom a trivial state can be described by areduced finite-dimensional variational problem of Lagrangiantype. This provides a rigorousjustification of rod theoryfrom fully nonlinear three-dimensionalelasticity.The book will be of interest to researchers working inclassical mechanics, dynamical systems, elliptic variationalproblems, and continuum mechanics. It begins with theelements of Hamiltonian theory and center manifold reductionin order to make the methods accessible to non-specialists,from graduatestudent level.
出版日期Book 1991
關(guān)鍵詞Bifurcation; Center Manifold; Hamiltonian and Langrangian Systems; Lie group; Nonlinear Elasticity; Varia
版次1
doihttps://doi.org/10.1007/BFb0097544
isbn_softcover978-3-540-54710-5
isbn_ebook978-3-540-46441-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1991
The information of publication is updating

書目名稱Hamiltonian and Lagrangian Flows on Center Manifolds影響因子(影響力)




書目名稱Hamiltonian and Lagrangian Flows on Center Manifolds影響因子(影響力)學(xué)科排名




書目名稱Hamiltonian and Lagrangian Flows on Center Manifolds網(wǎng)絡(luò)公開度




書目名稱Hamiltonian and Lagrangian Flows on Center Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hamiltonian and Lagrangian Flows on Center Manifolds被引頻次




書目名稱Hamiltonian and Lagrangian Flows on Center Manifolds被引頻次學(xué)科排名




書目名稱Hamiltonian and Lagrangian Flows on Center Manifolds年度引用




書目名稱Hamiltonian and Lagrangian Flows on Center Manifolds年度引用學(xué)科排名




書目名稱Hamiltonian and Lagrangian Flows on Center Manifolds讀者反饋




書目名稱Hamiltonian and Lagrangian Flows on Center Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:32:27 | 只看該作者
地板
發(fā)表于 2025-3-22 05:51:48 | 只看該作者
Book 1991esearchers working inclassical mechanics, dynamical systems, elliptic variationalproblems, and continuum mechanics. It begins with theelements of Hamiltonian theory and center manifold reductionin order to make the methods accessible to non-specialists,from graduatestudent level.
5#
發(fā)表于 2025-3-22 09:45:45 | 只看該作者
Elliptic variational problems on cylindrical domains,
6#
發(fā)表于 2025-3-22 13:18:32 | 只看該作者
Hamiltonian and Lagrangian Flows on Center Manifoldswith Applications to
7#
發(fā)表于 2025-3-22 17:23:02 | 只看該作者
8#
發(fā)表于 2025-3-22 22:12:01 | 只看該作者
978-3-540-54710-5Springer-Verlag Berlin Heidelberg 1991
9#
發(fā)表于 2025-3-23 04:57:56 | 只看該作者
10#
發(fā)表于 2025-3-23 09:21:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开原市| 阿城市| 全州县| 霍山县| 嘉禾县| 马鞍山市| 随州市| 开江县| 永年县| 庆阳市| 赤城县| 岳池县| 万安县| 江孜县| 印江| 保康县| 三江| 盖州市| 景洪市| 密山市| 彭州市| 虎林市| 刚察县| 大姚县| 永清县| 大田县| 察哈| 浑源县| 巴南区| 建湖县| 疏附县| 饶阳县| 建宁县| 曲阜市| 威海市| 杭州市| 郓城县| 兴义市| 永昌县| 桃园市| 花莲县|