找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Reduction by Stages; Jerrold E. Marsden,Gerard Misiolek,Tudor S. Ratiu Book 2007 Springer-Verlag Berlin Heidelberg 2007 DEX.Ha

[復制鏈接]
查看: 34258|回復: 51
樓主
發(fā)表于 2025-3-21 16:10:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hamiltonian Reduction by Stages
編輯Jerrold E. Marsden,Gerard Misiolek,Tudor S. Ratiu
視頻videohttp://file.papertrans.cn/421/420639/420639.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Hamiltonian Reduction by Stages;  Jerrold E. Marsden,Gerard Misiolek,Tudor S. Ratiu Book 2007 Springer-Verlag Berlin Heidelberg 2007 DEX.Ha
描述.In this volume readers will find for the first time a detailed account of the theory of symplectic reduction by stages, along with numerous illustrations of the theory. Special emphasis is given to group extensions, including a detailed discussion of the Euclidean group, the oscillator group, the Bott-Virasoro group and other groups of matrices. Ample background theory on symplectic reduction and cotangent bundle reduction in particular is provided. Novel features of the book are the inclusion of a systematic treatment of the cotangent bundle case, including the identification of cocycles with magnetic terms, as well as the general theory of singular reduction by stages..
出版日期Book 2007
關鍵詞DEX; Hamiltonian; Volume; distribution; group; identification; matrices; mechanics; momentum; reduction; symme
版次1
doihttps://doi.org/10.1007/978-3-540-72470-4
isbn_softcover978-3-540-72469-8
isbn_ebook978-3-540-72470-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

書目名稱Hamiltonian Reduction by Stages影響因子(影響力)




書目名稱Hamiltonian Reduction by Stages影響因子(影響力)學科排名




書目名稱Hamiltonian Reduction by Stages網(wǎng)絡公開度




書目名稱Hamiltonian Reduction by Stages網(wǎng)絡公開度學科排名




書目名稱Hamiltonian Reduction by Stages被引頻次




書目名稱Hamiltonian Reduction by Stages被引頻次學科排名




書目名稱Hamiltonian Reduction by Stages年度引用




書目名稱Hamiltonian Reduction by Stages年度引用學科排名




書目名稱Hamiltonian Reduction by Stages讀者反饋




書目名稱Hamiltonian Reduction by Stages讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:49:45 | 只看該作者
The Physiology of the Lower Urinary Tractction theory in the general setting of symplectic manifolds. The next chapter deals with, amongst other things, the important case of cotangent bundle reduction. Both of these cases are fundamental ingredients in the reduction by stages program.
板凳
發(fā)表于 2025-3-22 00:44:40 | 只看該作者
地板
發(fā)表于 2025-3-22 04:55:26 | 只看該作者
https://doi.org/10.1007/978-1-4757-1451-7d not have been made had we followed exclusively the purely algebraic approach in §5.2. Having said that, we will analyze the relation between the stages theorem in this chapter and that in the previous one.
5#
發(fā)表于 2025-3-22 09:22:18 | 只看該作者
6#
發(fā)表于 2025-3-22 16:23:29 | 只看該作者
Berthold Huppertz,Ekkehard Schleu?ner In this chapter we will spell out the conditions under which optimal reduction by . renders the same result as reduction in the following two stages: we first reduce by .; the resulting space inherits symmetry properties coming from the quotient Lie group . that can be used to reduce one more time.
7#
發(fā)表于 2025-3-22 20:26:44 | 只看該作者
Symplectic Reductionction theory in the general setting of symplectic manifolds. The next chapter deals with, amongst other things, the important case of cotangent bundle reduction. Both of these cases are fundamental ingredients in the reduction by stages program.
8#
發(fā)表于 2025-3-22 23:44:22 | 只看該作者
Stages and Coadjoint Orbits of Central Extensionsductions. To deal with this situation, we use the theory developed in the preceding chapter. The same sort of phenomenon also occurs in Lagrangian reduction by stages, as presented in Cendra, Marsden, and Ratiu [2001a].
9#
發(fā)表于 2025-3-23 03:18:22 | 只看該作者
Reduction by Stages with Topological Conditionsd not have been made had we followed exclusively the purely algebraic approach in §5.2. Having said that, we will analyze the relation between the stages theorem in this chapter and that in the previous one.
10#
發(fā)表于 2025-3-23 06:02:36 | 只看該作者
Optimal Orbit Reductionhat we should study is .(.)/.?=?.(.)/., where .?:=?.·???./.?.. The following pages constitute an in-depth study of this quotient and its relation with new (pre)-symplectic manifolds that can be used to reproduce the classical orbit reduction program and expressions.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
合山市| 吐鲁番市| 西藏| 卫辉市| 大埔县| 威信县| 浪卡子县| 资阳市| 徐汇区| 宁河县| 儋州市| 鹤岗市| 都安| 淄博市| 阳西县| 屯留县| 汤阴县| 石棉县| 中卫市| 嘉定区| 辉县市| 五指山市| 浪卡子县| 图木舒克市| 昔阳县| 钦州市| 吴川市| 云安县| 双牌县| 蕲春县| 饶平县| 寻乌县| 尉氏县| 林西县| 射阳县| 吴桥县| 永济市| 子长县| 兰考县| 康保县| 同心县|