找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Partial Differential Equations and Applications; Philippe Guyenne,David Nicholls,Catherine Sulem Book 2015 Springer Science+Bu

[復(fù)制鏈接]
樓主: 夾子
11#
發(fā)表于 2025-3-23 10:15:36 | 只看該作者
The Physiology of Aggression and Defeatfunction. Let . be the ..-basis formed by eigenfunctions of the operator ?△ + . (.). For a complex function .(.), write it as .(.)?=?......(.) and set .. Then for any solution .(.,?.) of the linear equation . we have .(.(.,???))?=?.. In this work it is proved that if equation (?) with a sufficiently
12#
發(fā)表于 2025-3-23 14:26:36 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:55:25 | 只看該作者
,Hamiltonian Structure, Fluid Representation and Stability for the Vlasov–Dirac–Benney Equation,rac–Benney equation or in short V–D–B equation. As such it contains both new results and efforts to synthesize previous observations. One of main links between the different issues is the use of the energy of the system. In some cases such energy becomes a convex functional and allows to extend to t
15#
發(fā)表于 2025-3-24 04:28:23 | 只看該作者
Analysis of Enhanced Diffusion in Taylor Dispersion via a Model Problem, infinite channel. Taylor observed in the 1950s that, in such a setting, the tracer diffuses at a rate proportional to 1∕., rather than the expected rate proportional to .. We provide a mathematical explanation for this enhanced diffusion using a combination of Fourier analysis and center manifold t
16#
發(fā)表于 2025-3-24 07:00:14 | 只看該作者
Normal Form Transformations for Capillary-Gravity Water Waves, in the framework of Hamiltonian systems, for which the Hamiltonian energy has a convergent Taylor expansion in canonical variables near the equilibrium solution. We give an analysis of the Birkhoff normal form transformation that eliminates third-order non-resonant terms of the Hamiltonian. We also
17#
發(fā)表于 2025-3-24 14:11:50 | 只看該作者
18#
發(fā)表于 2025-3-24 18:45:55 | 只看該作者
19#
發(fā)表于 2025-3-24 22:15:28 | 只看該作者
20#
發(fā)表于 2025-3-25 03:10:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北票市| 安新县| 成都市| 宜君县| 六盘水市| 昆山市| 广安市| 仁寿县| 泰兴市| 洛阳市| 博罗县| 张家界市| 儋州市| 彭山县| 南木林县| 玉山县| 长武县| 清徐县| 高安市| 安多县| 西乌珠穆沁旗| 襄樊市| 长治县| 淮阳县| 长春市| 苍南县| 大理市| 报价| 沛县| 盐山县| 五原县| 新民市| 永新县| 杭州市| 嘉峪关市| 普兰店市| 门头沟区| 运城市| 嘉义市| 万山特区| 柳江县|