找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Partial Differential Equations and Applications; Philippe Guyenne,David Nicholls,Catherine Sulem Book 2015 Springer Science+Bu

[復(fù)制鏈接]
樓主: 夾子
11#
發(fā)表于 2025-3-23 10:15:36 | 只看該作者
The Physiology of Aggression and Defeatfunction. Let . be the ..-basis formed by eigenfunctions of the operator ?△ + . (.). For a complex function .(.), write it as .(.)?=?......(.) and set .. Then for any solution .(.,?.) of the linear equation . we have .(.(.,???))?=?.. In this work it is proved that if equation (?) with a sufficiently
12#
發(fā)表于 2025-3-23 14:26:36 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:55:25 | 只看該作者
,Hamiltonian Structure, Fluid Representation and Stability for the Vlasov–Dirac–Benney Equation,rac–Benney equation or in short V–D–B equation. As such it contains both new results and efforts to synthesize previous observations. One of main links between the different issues is the use of the energy of the system. In some cases such energy becomes a convex functional and allows to extend to t
15#
發(fā)表于 2025-3-24 04:28:23 | 只看該作者
Analysis of Enhanced Diffusion in Taylor Dispersion via a Model Problem, infinite channel. Taylor observed in the 1950s that, in such a setting, the tracer diffuses at a rate proportional to 1∕., rather than the expected rate proportional to .. We provide a mathematical explanation for this enhanced diffusion using a combination of Fourier analysis and center manifold t
16#
發(fā)表于 2025-3-24 07:00:14 | 只看該作者
Normal Form Transformations for Capillary-Gravity Water Waves, in the framework of Hamiltonian systems, for which the Hamiltonian energy has a convergent Taylor expansion in canonical variables near the equilibrium solution. We give an analysis of the Birkhoff normal form transformation that eliminates third-order non-resonant terms of the Hamiltonian. We also
17#
發(fā)表于 2025-3-24 14:11:50 | 只看該作者
18#
發(fā)表于 2025-3-24 18:45:55 | 只看該作者
19#
發(fā)表于 2025-3-24 22:15:28 | 只看該作者
20#
發(fā)表于 2025-3-25 03:10:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望城县| 元朗区| 驻马店市| 乌拉特前旗| 黄大仙区| 北京市| 浪卡子县| 调兵山市| 枣强县| 新民市| 福安市| 罗甸县| 赤水市| 盐池县| 梁平县| 溧水县| 东乌| 平果县| 江永县| 宁武县| 济源市| 临猗县| 乐陵市| 囊谦县| 三明市| 镇巴县| 夏邑县| 土默特左旗| 鄂托克前旗| 浏阳市| 罗源县| 瓮安县| 墨竹工卡县| 黄骅市| 赣榆县| 徐闻县| 乐山市| 永德县| 亚东县| 博湖县| 仁布县|