找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Field Theory in the Radiating Regime; Piotr T. Chru?ciel,Jacek Jezierski,Jerzy Kijowski Book 2002 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
樓主: SCOWL
21#
發(fā)表于 2025-3-25 03:32:43 | 只看該作者
22#
發(fā)表于 2025-3-25 10:29:37 | 只看該作者
https://doi.org/10.1007/978-3-319-63847-8eories. In that reference the dynamics of fields was that corresponding to motions of a hypersurface Σ along the flow of a vector field . on a manifold .. The vector field was further assumed to be transverse to Σ. There are, however, several situations, where the transversality of . to Σ is not a n
23#
發(fā)表于 2025-3-25 15:16:29 | 只看該作者
The Physical Nature of the Skinscalar fields on . can be viewed as sections of a trivial bundle . In this theory a natural choice for the Lagrangian is the one, which is manifestly invariant under Poincaré transformations: .% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC% vAUfeBSjuyZL2yd9gzLbvyNv2Ca
24#
發(fā)表于 2025-3-25 15:58:50 | 只看該作者
25#
發(fā)表于 2025-3-25 21:10:40 | 只看該作者
978-3-642-07681-7Springer-Verlag Berlin Heidelberg 2002
26#
發(fā)表于 2025-3-26 01:42:25 | 只看該作者
Hamiltonian Field Theory in the Radiating Regime978-3-540-45604-9Series ISSN 0940-7677
27#
發(fā)表于 2025-3-26 04:28:56 | 只看該作者
28#
發(fā)表于 2025-3-26 11:42:08 | 只看該作者
29#
發(fā)表于 2025-3-26 12:55:27 | 只看該作者
https://doi.org/10.1007/3-540-45604-XGravity; Hamiltonian Formalism in Classical Field Theory; Trautman-Bondi Mass; dynamical systems; dynami
30#
發(fā)表于 2025-3-26 18:57:31 | 只看該作者
https://doi.org/10.1007/978-1-4419-9449-3In this section we will consider the gravitational field on a space-time ., described by a metric tensor . ., of signature (-1, +1, +1, +1), which satisfies the vacuum Einstein equations: . .(.)= 0. (5.1)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌兰浩特市| 越西县| 龙岩市| 肇州县| 德惠市| 长海县| 锡林浩特市| 堆龙德庆县| 巴林左旗| 河曲县| 芒康县| 荣成市| 石泉县| 当阳市| 敦化市| 尚志市| 苗栗市| 安阳县| 时尚| 灌阳县| 吕梁市| 县级市| 丰城市| 新丰县| 互助| 达拉特旗| 炉霍县| 曲周县| 万年县| 闵行区| 浏阳市| 镇康县| 安吉县| 清涧县| 新民市| 贵溪市| 恩施市| 黄平县| 同心县| 沁水县| 玉门市|