找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Field Theory in the Radiating Regime; Piotr T. Chru?ciel,Jacek Jezierski,Jerzy Kijowski Book 2002 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
樓主: SCOWL
21#
發(fā)表于 2025-3-25 03:32:43 | 只看該作者
22#
發(fā)表于 2025-3-25 10:29:37 | 只看該作者
https://doi.org/10.1007/978-3-319-63847-8eories. In that reference the dynamics of fields was that corresponding to motions of a hypersurface Σ along the flow of a vector field . on a manifold .. The vector field was further assumed to be transverse to Σ. There are, however, several situations, where the transversality of . to Σ is not a n
23#
發(fā)表于 2025-3-25 15:16:29 | 只看該作者
The Physical Nature of the Skinscalar fields on . can be viewed as sections of a trivial bundle . In this theory a natural choice for the Lagrangian is the one, which is manifestly invariant under Poincaré transformations: .% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC% vAUfeBSjuyZL2yd9gzLbvyNv2Ca
24#
發(fā)表于 2025-3-25 15:58:50 | 只看該作者
25#
發(fā)表于 2025-3-25 21:10:40 | 只看該作者
978-3-642-07681-7Springer-Verlag Berlin Heidelberg 2002
26#
發(fā)表于 2025-3-26 01:42:25 | 只看該作者
Hamiltonian Field Theory in the Radiating Regime978-3-540-45604-9Series ISSN 0940-7677
27#
發(fā)表于 2025-3-26 04:28:56 | 只看該作者
28#
發(fā)表于 2025-3-26 11:42:08 | 只看該作者
29#
發(fā)表于 2025-3-26 12:55:27 | 只看該作者
https://doi.org/10.1007/3-540-45604-XGravity; Hamiltonian Formalism in Classical Field Theory; Trautman-Bondi Mass; dynamical systems; dynami
30#
發(fā)表于 2025-3-26 18:57:31 | 只看該作者
https://doi.org/10.1007/978-1-4419-9449-3In this section we will consider the gravitational field on a space-time ., described by a metric tensor . ., of signature (-1, +1, +1, +1), which satisfies the vacuum Einstein equations: . .(.)= 0. (5.1)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南澳县| 霍林郭勒市| 于都县| 栾城县| 尼玛县| 开鲁县| 武乡县| 肇庆市| 莱西市| 胶州市| 昌图县| 梨树县| 常山县| 桦川县| 裕民县| 宝兴县| 吉首市| 广德县| 清水河县| 泊头市| 黔南| 盐边县| 万荣县| 连山| 衡阳县| 沁源县| 织金县| 吉安县| 旺苍县| 任丘市| 怀来县| 荣昌县| 文山县| 涿鹿县| 陈巴尔虎旗| 吕梁市| 东丰县| 长岭县| 武川县| 朝阳市| 澳门|