找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems and Applications; Walter Craig Conference proceedings 20081st edition Springer Science+Business Media B.V. 2

[復(fù)制鏈接]
樓主: chondrocyte
51#
發(fā)表于 2025-3-30 08:46:08 | 只看該作者
Groups and topology in the Euler hydrodynamics and KdV,We survey applications of group theory and topology in fluid mechanics and integrable systems. The main reference for most facts in this paper is [1], see also details in [4].
52#
發(fā)表于 2025-3-30 15:32:19 | 只看該作者
A Birkhoff normal form theorem for some semilinear PDEs,In these lectures we present an extension of Birkhoff normal form theorem to some Hamiltonian PDEs. The theorem applies to semilinear equations with nonlinearity of a suitable class.We present an application to the nonlinear wave equation on a segment or on a sphere. We also give a complete proof of all the results.
53#
發(fā)表于 2025-3-30 20:00:43 | 只看該作者
https://doi.org/10.1007/978-1-4020-6964-2Biophysics; NATO; Physics; Potential; Science; Security; Sobolev space; Sub-Series B; analysis; partial diffe
54#
發(fā)表于 2025-3-30 20:51:31 | 只看該作者
55#
發(fā)表于 2025-3-31 03:39:29 | 只看該作者
56#
發(fā)表于 2025-3-31 05:12:54 | 只看該作者
Peter R. Bergethon,Kevin Hallockns with rational frequency. This problem requires variational methods of a completely different nature, such as constrained minimization and a priori estimates derivable from variational inequalities.
57#
發(fā)表于 2025-3-31 12:17:00 | 只看該作者
1874-6500 ems in classical mechanics, continuum mechanics, and partial differential equations. These lecture notes cover many areas of recent mathematical progress in this field, including the new choreographies of many 978-1-4020-6963-5978-1-4020-6964-2Series ISSN 1874-6500 Series E-ISSN 1874-6535
58#
發(fā)表于 2025-3-31 15:55:29 | 只看該作者
Four lectures on the N-body problem,scribed symmetries and in particular to extend globally Lyapunov families bifurcating from polygonal relative equilibria. Celestial mechanics is famous for demanding extensive computations which hardly appear here: these notes only describe the skeleton on which these computations live.
59#
發(fā)表于 2025-3-31 18:19:49 | 只看該作者
60#
發(fā)表于 2025-3-31 23:09:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盘锦市| 汶上县| 鸡泽县| 永新县| 龙川县| 上高县| 杭锦旗| 维西| 潢川县| 哈密市| 上思县| 洪湖市| 台江县| 中山市| 垫江县| 芦山县| 天门市| 湖口县| 巴彦淖尔市| 县级市| 皋兰县| 博客| 泰来县| 梅河口市| 襄汾县| 东台市| 鄂伦春自治旗| 韩城市| 图木舒克市| 乌拉特后旗| 垣曲县| 玉田县| 阿巴嘎旗| 长葛市| 慈溪市| 米脂县| 三亚市| 奈曼旗| 剑河县| 黑龙江省| 大邑县|