找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems and Applications; Walter Craig Conference proceedings 20081st edition Springer Science+Business Media B.V. 2

[復制鏈接]
樓主: chondrocyte
31#
發(fā)表于 2025-3-26 23:35:17 | 只看該作者
32#
發(fā)表于 2025-3-27 01:48:49 | 只看該作者
33#
發(fā)表于 2025-3-27 06:42:23 | 只看該作者
The Physical Attractiveness Phenomenatablish the presence of these structures in a given near integrable systems or in systems for which good numerical information is available. We also discuss some quantitative features of the diffusion mechanisms such as time of diffusion, Hausdorff dimension of diffusing orbits, etc.
34#
發(fā)表于 2025-3-27 10:08:05 | 只看該作者
Edmund Drauglis,Robert I. Jaffeeundergoes substantial variation. Variational method has been shown a powerful tool for the study of Arnold diffusion of Hamiltonian systems convex in actions. In variational language, it amounts to construct an orbit connecting two different Aubry sets. This is the main content of the lecture notes.
35#
發(fā)表于 2025-3-27 16:50:52 | 只看該作者
36#
發(fā)表于 2025-3-27 20:42:50 | 只看該作者
https://doi.org/10.1007/978-1-349-81720-7 consider the problem in weighted Sobolev spaces, which comprise classical Sobolev spaces, Gevrey spaces, and analytic spaces. We show that the initial value problem is well posed in all spaces with subexponential growth of Fourier coefficients, and ‘a(chǎn)lmost well posed’ in spaces with exponential growth of Fourier coefficients.
37#
發(fā)表于 2025-3-27 22:54:51 | 只看該作者
38#
發(fā)表于 2025-3-28 04:59:46 | 只看該作者
39#
發(fā)表于 2025-3-28 08:56:59 | 只看該作者
40#
發(fā)表于 2025-3-28 10:58:32 | 只看該作者
Variational methods for the problem of Arnold diffusion,undergoes substantial variation. Variational method has been shown a powerful tool for the study of Arnold diffusion of Hamiltonian systems convex in actions. In variational language, it amounts to construct an orbit connecting two different Aubry sets. This is the main content of the lecture notes.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
镇赉县| 西华县| 迁安市| 渝中区| 永吉县| 竹北市| 呼伦贝尔市| 东莞市| 偏关县| 年辖:市辖区| 新乡市| 日喀则市| 上饶市| 万源市| 定兴县| 厦门市| 岳阳县| 茌平县| 齐河县| 浦江县| 宁德市| 肇庆市| 东台市| 鹤壁市| 武安市| 津南区| 乌鲁木齐县| 丰县| 六枝特区| 镇康县| 新化县| 五寨县| 夏邑县| 高平市| 冷水江市| 尉犁县| 雅安市| 正定县| 古交市| 珲春市| 赤城县|