找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems; History, Theory, and H. S. Dumas,K. S. Meyer,D. S. Schmidt Conference proceedings 1995 Springer-Verlag New Y

[復制鏈接]
樓主: cobble
11#
發(fā)表于 2025-3-23 13:27:38 | 只看該作者
Transverse Homoclinic Connections for Geodesic FlowsGiven a two dimensional Riemannian manifold for which the geodesic flow has a homoclinic (heteroclinic) connection, we show how to make a .. small perturbation of the metric for which the connection becomes transverse. We apply this result to several examples.
12#
發(fā)表于 2025-3-23 15:00:47 | 只看該作者
13#
發(fā)表于 2025-3-23 19:21:30 | 只看該作者
Suspension of Symplectic Twist Maps by HamiltoniansWe extend some results of Moser [17], Bialy and Polterovitch [1], on the suspension of symplectic twist maps by Hamiltonian flows.
14#
發(fā)表于 2025-3-24 00:41:04 | 只看該作者
Analytic Torsion, Flows and FoliationsWe present an overview of the known results in Lefschetz formulas for flows, that is, on the problem of relating the topology of a manifold to the number and nature of periodic orbits of a vector field.
15#
發(fā)表于 2025-3-24 05:49:45 | 只看該作者
The Global Phase Structure of the Three Dimensional Isosceles Three Body Problem with Zero EnergyWe study the global flow defined by the three-dimensional isosceles three-body problem with zero energy. A new set of coordinates and a scaled time are introduced which alow the phase space to be compactified by adding boundary manifolds. Geometric argument gives an almost complete sketch of the global phase portrait of this gravitational system.
16#
發(fā)表于 2025-3-24 09:10:35 | 只看該作者
978-1-4613-8450-2Springer-Verlag New York, Inc. 1995
17#
發(fā)表于 2025-3-24 12:02:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:08:13 | 只看該作者
https://doi.org/10.1007/978-1-4613-8448-9bifurcation; calculus; dynamical systems; hamiltonian system; stability
19#
發(fā)表于 2025-3-24 20:15:24 | 只看該作者
20#
發(fā)表于 2025-3-24 23:40:48 | 只看該作者
https://doi.org/10.1007/978-3-030-65343-9der Waals interaction for . = 0, whose orbit manifold is a 2-dimensional sphere. Complementing the work of Alhassid .. and Ganesan and Lakshmanan, we show that the global flow is characterized by three parametric bifurcations of butterfly type corresponding to the dynamical symmetries of the problem.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 16:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阳山县| 武胜县| 五大连池市| 洛川县| 聂荣县| 罗甸县| 安图县| 阿坝县| 南昌市| 嘉义县| 翼城县| 镇宁| 新密市| 靖边县| 安平县| 绵竹市| 英超| 双鸭山市| 扶风县| 大同县| 广昌县| 清徐县| 青海省| 东宁县| 夏邑县| 蓬莱市| 都匀市| 昭平县| 五华县| 淮滨县| 崇明县| 永定县| 会理县| 天峨县| 德清县| 逊克县| 西丰县| 巴林右旗| 崇左市| 临漳县| 安达市|