找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hadamard Matrix Analysis and Synthesis; With Applications to R. K. Rao Yarlagadda,John E. Hershey Book 1997 Springer Science+Business Media

[復(fù)制鏈接]
樓主: 是消毒
21#
發(fā)表于 2025-3-25 05:57:02 | 只看該作者
https://doi.org/10.1007/978-981-16-7252-1The Hadamard domain is well suited for certain calculations of special interest to pattern analysis. Pearl (1971) looks at the Hadamard domain in light of his recognition that “... .... .” One of these problem classes is the calculation of the average Hamming distance between two n-bit independent, randomly generated vectors.
22#
發(fā)表于 2025-3-25 10:46:55 | 只看該作者
23#
發(fā)表于 2025-3-25 13:36:00 | 只看該作者
The Story of Eczema in Pictures,In conjunction with Hadamard matrices, boolean functions can be thought of as (1) representations of patterns, or, (2) lossy multiplexers or data combiners. For this discussion, let .. denote a boolean function of degree d defined as a mapping from the 2. states (.., ..,..., ..), .. ∈ }0, 1}. such that ..(.., .., ..., ..) ∈ }±1}.
24#
發(fā)表于 2025-3-25 16:24:34 | 只看該作者
Bernard John,George L. Gabor MiklosThe empirical results of the last section indicate that the question of synthesis of bent functions (Rothaus, 1976) may be worthwhile since they seem to require the greatest number of dimensions, m, in our approach of spectrally preconditioned threshold logic.
25#
發(fā)表于 2025-3-25 20:28:58 | 只看該作者
26#
發(fā)表于 2025-3-26 02:46:17 | 只看該作者
27#
發(fā)表于 2025-3-26 06:53:08 | 只看該作者
The Sylvester-Hadamard Matrix of Rank 2,,We will be concerned with a particular form of the Hadamard matrix of rank 2.. This form is produced using a recursive Kronecker product. Specifically, the Hadamard matrix of interest is designated a . Matrix after Sylvester (1867), denoted as .. and created by . where .. Thus, . and
28#
發(fā)表于 2025-3-26 09:04:44 | 只看該作者
29#
發(fā)表于 2025-3-26 14:22:21 | 只看該作者
30#
發(fā)表于 2025-3-26 20:27:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
睢宁县| 永吉县| 蛟河市| 临武县| 广河县| 南岸区| 施秉县| 咸丰县| 茶陵县| 黄石市| 武隆县| 邛崃市| 大庆市| 新源县| 鲁甸县| 惠州市| 邵武市| 澜沧| 酉阳| 大理市| 莒南县| 方正县| 什邡市| 岳阳市| 育儿| 拉萨市| 靖西县| 美姑县| 九江县| 张家口市| 达尔| 全椒县| 都匀市| 温州市| 蒲城县| 舒兰市| 古交市| 礼泉县| 榆林市| 庆元县| 十堰市|