找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Conjecture
11#
發(fā)表于 2025-3-23 10:19:45 | 只看該作者
Super Sinne - Warum wir 32 davon habenhe Gr?bner’s longstanding problem regarding the arithmetic Cohen–Macaulayness of projections of Veronese varieties and, second, the fundamental problem of determining the internal structure of the algebra of invariants of finite groups. We work to evince the symbiosis between these two subjects and
12#
發(fā)表于 2025-3-23 16:26:53 | 只看該作者
The Need for Super-Flexibility,ermining when a monomial projection of the Veronese variety is an aCM variety. We include a comprehensive review of Gr?bner’s problem from a historic standpoint. We explore the unexpected connection with the weak Lefschetz property of artinian ideals.
13#
發(fā)表于 2025-3-23 21:46:45 | 只看該作者
Super-Flexibility for Knowledge Enterprises groups and the theory of semigroup rings. The homogeneous coordinate ring . of . is a graded CM ring isomorphic to the ring .. Combinatorially, . is isomorphic to the semigroup ring of the normal affine semigroup . associated to .. These features endow the homogeneous coordinate ring . with a rich
14#
發(fā)表于 2025-3-23 23:29:53 | 只看該作者
15#
發(fā)表于 2025-3-24 05:40:31 | 只看該作者
16#
發(fā)表于 2025-3-24 08:42:16 | 只看該作者
Invariants of Finite Abelian Groups and aCM Projections of Veronese Varieties: Applications,ermining when a monomial projection of the Veronese variety is an aCM variety. We include a comprehensive review of Gr?bner’s problem from a historic standpoint. We explore the unexpected connection with the weak Lefschetz property of artinian ideals.
17#
發(fā)表于 2025-3-24 13:52:45 | 只看該作者
The Human in the Network of Relationships,This introductory chapter has no new results and contains the main objects, results and tools that we shall use in the forthcoming chapters. The Cohen–Macaulay property is presented, the notions of a semigroup and a semigroup ring are introduced, the invariant theory of finite groups and the weak Lefschetz property are reviewed.
18#
發(fā)表于 2025-3-24 16:36:29 | 只看該作者
19#
發(fā)表于 2025-3-24 21:47:53 | 只看該作者
Algebraic Preliminaries,This introductory chapter has no new results and contains the main objects, results and tools that we shall use in the forthcoming chapters. The Cohen–Macaulay property is presented, the notions of a semigroup and a semigroup ring are introduced, the invariant theory of finite groups and the weak Lefschetz property are reviewed.
20#
發(fā)表于 2025-3-25 02:11:57 | 只看該作者
Normal Bundle of RL-Varieties,Our purpose in this chapter is to study the geometry and the normal bundle of a family of smooth rational monomial projections . of Veronese varieties ., we called them .-varieties. This family of monomial projections is naturally related to .-varieties . with a finite abelian group . of order . and whose coordinate rings . are level rings with ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芦溪县| 泾源县| 衡南县| 永修县| 张家口市| 海淀区| 夏邑县| 龙陵县| 土默特左旗| 涪陵区| 宝清县| 建湖县| 遂川县| 兰西县| 辽阳市| 乌兰浩特市| 措美县| 开平市| 南城县| 通辽市| 蒙城县| 浮梁县| 乌拉特后旗| 玉龙| 石渠县| 阳江市| 忻州市| 德江县| 慈溪市| 财经| 唐河县| 西盟| 全椒县| 玉田县| 那曲县| 达拉特旗| 鸡东县| 呼玛县| 东至县| 甘南县| 普陀区|