找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Conjecture
11#
發(fā)表于 2025-3-23 10:19:45 | 只看該作者
Super Sinne - Warum wir 32 davon habenhe Gr?bner’s longstanding problem regarding the arithmetic Cohen–Macaulayness of projections of Veronese varieties and, second, the fundamental problem of determining the internal structure of the algebra of invariants of finite groups. We work to evince the symbiosis between these two subjects and
12#
發(fā)表于 2025-3-23 16:26:53 | 只看該作者
The Need for Super-Flexibility,ermining when a monomial projection of the Veronese variety is an aCM variety. We include a comprehensive review of Gr?bner’s problem from a historic standpoint. We explore the unexpected connection with the weak Lefschetz property of artinian ideals.
13#
發(fā)表于 2025-3-23 21:46:45 | 只看該作者
Super-Flexibility for Knowledge Enterprises groups and the theory of semigroup rings. The homogeneous coordinate ring . of . is a graded CM ring isomorphic to the ring .. Combinatorially, . is isomorphic to the semigroup ring of the normal affine semigroup . associated to .. These features endow the homogeneous coordinate ring . with a rich
14#
發(fā)表于 2025-3-23 23:29:53 | 只看該作者
15#
發(fā)表于 2025-3-24 05:40:31 | 只看該作者
16#
發(fā)表于 2025-3-24 08:42:16 | 只看該作者
Invariants of Finite Abelian Groups and aCM Projections of Veronese Varieties: Applications,ermining when a monomial projection of the Veronese variety is an aCM variety. We include a comprehensive review of Gr?bner’s problem from a historic standpoint. We explore the unexpected connection with the weak Lefschetz property of artinian ideals.
17#
發(fā)表于 2025-3-24 13:52:45 | 只看該作者
The Human in the Network of Relationships,This introductory chapter has no new results and contains the main objects, results and tools that we shall use in the forthcoming chapters. The Cohen–Macaulay property is presented, the notions of a semigroup and a semigroup ring are introduced, the invariant theory of finite groups and the weak Lefschetz property are reviewed.
18#
發(fā)表于 2025-3-24 16:36:29 | 只看該作者
19#
發(fā)表于 2025-3-24 21:47:53 | 只看該作者
Algebraic Preliminaries,This introductory chapter has no new results and contains the main objects, results and tools that we shall use in the forthcoming chapters. The Cohen–Macaulay property is presented, the notions of a semigroup and a semigroup ring are introduced, the invariant theory of finite groups and the weak Lefschetz property are reviewed.
20#
發(fā)表于 2025-3-25 02:11:57 | 只看該作者
Normal Bundle of RL-Varieties,Our purpose in this chapter is to study the geometry and the normal bundle of a family of smooth rational monomial projections . of Veronese varieties ., we called them .-varieties. This family of monomial projections is naturally related to .-varieties . with a finite abelian group . of order . and whose coordinate rings . are level rings with ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大新县| 衡阳市| 志丹县| 玉屏| 寻乌县| 新津县| 顺义区| 鄂托克旗| 罗平县| 隆回县| 梁山县| 安徽省| 巢湖市| 通化市| 九寨沟县| 阜阳市| 沙洋县| 闸北区| 广平县| 鄢陵县| 邵武市| 吴川市| 徐水县| 巴林左旗| 万安县| 准格尔旗| 南汇区| 岳池县| 盐山县| 井冈山市| 寿光市| 惠东县| 竹山县| 镇原县| 乌恰县| 德惠市| 新乐市| 五大连池市| 辛集市| 鸡泽县| 错那县|