找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Halloween
11#
發(fā)表于 2025-3-23 13:45:54 | 只看該作者
12#
發(fā)表于 2025-3-23 16:01:50 | 只看該作者
13#
發(fā)表于 2025-3-23 21:19:47 | 只看該作者
Riemannian and Pseudo Riemannian GeometryAs explained in the previous chapter we should distinguish terms like topological spaces, differential topology, differential geometry, algebraic topology and algebraic geometry.
14#
發(fā)表于 2025-3-24 01:31:07 | 只看該作者
15#
發(fā)表于 2025-3-24 03:57:12 | 只看該作者
Configuration Space Topology and Topological Conservation LawsWith formal notations on topological spaces, homotopy, homology and cohomology introduced in the first three chapters, we have taken up their applications in Chaps. .–..
16#
發(fā)表于 2025-3-24 09:42:10 | 只看該作者
Spin-Statistics Theorem, Low Dimensional Topology and GeometryWe saw in the previous chapter the role of topology in multiparticle systems of elementary particles and providing explanation for possible statistics.
17#
發(fā)表于 2025-3-24 12:21:49 | 只看該作者
Braid Group, Knots, Three ManifoldsWe introduced braids and their group structure in Chap. .. We briefly recollect here so that we can study how knots in three-dimensional space . arise from these braids.
18#
發(fā)表于 2025-3-24 18:47:47 | 只看該作者
19#
發(fā)表于 2025-3-24 20:49:14 | 只看該作者
3D Gravity and BTZ BlackholeThree-dimensional gravity is an excellent model for understanding several features of topological and quantum aspects of gravity. This is because in three-dimensional gravity we do not have propagating (dynamical) degrees of freedom. But topological aspects provide interesting features. There is one more reason to understand this model.
20#
發(fā)表于 2025-3-24 23:33:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马边| 东兴市| 松桃| 宁陵县| 汾阳市| 封丘县| 游戏| 安化县| 夏河县| 肇州县| 舞阳县| 临海市| 灵山县| 普宁市| 东乌珠穆沁旗| 崇州市| 阳春市| 普宁市| 兴安盟| 丹江口市| 繁昌县| 沛县| 潼关县| 临夏县| 康平县| 句容市| 措美县| 山东省| 东至县| 江油市| 社旗县| 中宁县| 霍州市| 光山县| 中西区| 靖西县| 温宿县| 龙游县| 凌云县| 教育| 香格里拉县|