找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: mountebank
21#
發(fā)表于 2025-3-25 04:04:04 | 只看該作者
22#
發(fā)表于 2025-3-25 08:38:57 | 只看該作者
CafeLLM: Context-Aware Fine-Grained Semantic Clustering Using Large Language Modelsed and esoteric in many domains, presenting unique challenges that conventional named entity recognition (NER) or clustering methods fail to address. Here, we present CafeLLM, a Context-Aware Fine-grained clustering method that uses Large Language Models (LLMs) to cluster terms or phrases from these
23#
發(fā)表于 2025-3-25 14:56:06 | 只看該作者
24#
發(fā)表于 2025-3-25 18:26:01 | 只看該作者
MADP: Multi-modal Sequence Learning for?Alzheimer’s Disease Prediction with?Missing Dataease progression and improving the quality of life for affected individuals. A significant challenge in this context is the substantial amount of missing data, which arises due to the variable health status of subjects or other unpredictable circumstances. Moreover, existing methods struggle to accu
25#
發(fā)表于 2025-3-25 22:06:29 | 只看該作者
26#
發(fā)表于 2025-3-26 02:57:44 | 只看該作者
Improved VLN-BERT with?Reinforcing Endpoint Alignment for?Vision-and-Language Navigationng visual information from the surroundings. Currently, many pre-trained models and pre-training tasks have been proposed to assist agents in navigating unfamiliar environments using visual and linguistic information. However, ensuring that the agent stops near the endpoint is a challenging problem.
27#
發(fā)表于 2025-3-26 04:58:20 | 只看該作者
Bridging the Language Gap: Domain-Specific Dataset Construction for Medical LLMss a variety of tasks such as text generation, translation, and question answering. However, their effectiveness in specialized domains is constrained by the lack of domain-specific data. This paper presents an effective methodology for constructing domain-specific datasets using domain-specific corp
28#
發(fā)表于 2025-3-26 09:36:05 | 只看該作者
29#
發(fā)表于 2025-3-26 13:30:14 | 只看該作者
Semantic-Degrade Learning Framework for?Open World Object Detectionnature of real-world scenarios where systems encounter unknown objects. Unlike existing OWOD approaches which often rely on manually selected unknown proposals, we introduce an Adaptive Semantic-Degrade Learning framework. This framework, inspired by cognitive development theory, guides the model to
30#
發(fā)表于 2025-3-26 19:44:23 | 只看該作者
Multi-modal Prompts with?Feature Decoupling for?Open-Vocabulary Object Detectionor training. The Prompt serves as a template to assist in the construction of textual descriptions for categories. With the development of open-vocabulary object detection, multi-modal prompts with better performance have emerged. However, existing multi-modal prompts fail to align the context and o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
余江县| 大厂| 永昌县| 原阳县| 定西市| 西林县| 六枝特区| 乡城县| 泾阳县| 防城港市| 宣威市| 阳新县| 邵东县| 临沭县| 大悟县| 胶州市| 乌拉特后旗| 闻喜县| 麟游县| 福清市| 鸡泽县| 镇坪县| 龙岩市| 海原县| 洞头县| 天等县| 玛纳斯县| 烟台市| 金塔县| 永兴县| 镇安县| 洪洞县| 云南省| 都兰县| 保定市| 阿瓦提县| 克东县| 郸城县| 墨脱县| 平塘县| 蒙阴县|