找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 難受
31#
發(fā)表于 2025-3-26 23:48:50 | 只看該作者
Programmieren von Mikrocomputernase, each .-module can thus also be seen as an .-module with an additional structure. We prove that the effective descent morphisms of rings are exactly the . ones: the injective morphisms, which remain injective when tensored with whatever .-module. The descent theorem for rings implies an analogous result for algebras.
32#
發(fā)表于 2025-3-27 01:59:03 | 只看該作者
33#
發(fā)表于 2025-3-27 09:19:19 | 只看該作者
34#
發(fā)表于 2025-3-27 13:12:41 | 只看該作者
35#
發(fā)表于 2025-3-27 15:10:34 | 只看該作者
Aspekte der Metapher in der Neuzeit,uivalence of categories between the category of profinite spaces and that of Boolean algebras. This link will make it possible to combine algebraic and topological aspects in the infinite-dimensional Galois theory of fields, but also in the Galois theory of rings.
36#
發(fā)表于 2025-3-27 19:15:46 | 只看該作者
37#
發(fā)表于 2025-3-28 01:54:11 | 只看該作者
The Galois Theorem of Grothendieckhe quotients of Gal[. : .], which is finite and viewed here as acting on itself. It is a classical result of the theory of group actions that these quotients are themselves in bijection with the subgroups of Gal[. : .].
38#
發(fā)表于 2025-3-28 04:13:22 | 只看該作者
Profinite Topological Spacesuivalence of categories between the category of profinite spaces and that of Boolean algebras. This link will make it possible to combine algebraic and topological aspects in the infinite-dimensional Galois theory of fields, but also in the Galois theory of rings.
39#
發(fā)表于 2025-3-28 09:53:07 | 只看該作者
40#
發(fā)表于 2025-3-28 11:20:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浠水县| 调兵山市| 孟村| 四川省| 安乡县| 和静县| 东阿县| 阳曲县| 宣城市| 台中市| 东光县| 托克托县| 大洼县| 辰溪县| 元氏县| 收藏| 台东市| 板桥市| 工布江达县| 大安市| 锦州市| 花莲县| 始兴县| 海宁市| 平顺县| 房山区| 海丰县| 宣城市| 和政县| 华安县| 吴堡县| 涡阳县| 万宁市| 唐河县| 城步| 旬邑县| 祥云县| 金湖县| 剑河县| 新巴尔虎左旗| 黑山县|