找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 難受
31#
發(fā)表于 2025-3-26 23:48:50 | 只看該作者
Programmieren von Mikrocomputernase, each .-module can thus also be seen as an .-module with an additional structure. We prove that the effective descent morphisms of rings are exactly the . ones: the injective morphisms, which remain injective when tensored with whatever .-module. The descent theorem for rings implies an analogous result for algebras.
32#
發(fā)表于 2025-3-27 01:59:03 | 只看該作者
33#
發(fā)表于 2025-3-27 09:19:19 | 只看該作者
34#
發(fā)表于 2025-3-27 13:12:41 | 只看該作者
35#
發(fā)表于 2025-3-27 15:10:34 | 只看該作者
Aspekte der Metapher in der Neuzeit,uivalence of categories between the category of profinite spaces and that of Boolean algebras. This link will make it possible to combine algebraic and topological aspects in the infinite-dimensional Galois theory of fields, but also in the Galois theory of rings.
36#
發(fā)表于 2025-3-27 19:15:46 | 只看該作者
37#
發(fā)表于 2025-3-28 01:54:11 | 只看該作者
The Galois Theorem of Grothendieckhe quotients of Gal[. : .], which is finite and viewed here as acting on itself. It is a classical result of the theory of group actions that these quotients are themselves in bijection with the subgroups of Gal[. : .].
38#
發(fā)表于 2025-3-28 04:13:22 | 只看該作者
Profinite Topological Spacesuivalence of categories between the category of profinite spaces and that of Boolean algebras. This link will make it possible to combine algebraic and topological aspects in the infinite-dimensional Galois theory of fields, but also in the Galois theory of rings.
39#
發(fā)表于 2025-3-28 09:53:07 | 只看該作者
40#
發(fā)表于 2025-3-28 11:20:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
田阳县| 恩平市| 麻江县| 北碚区| 河源市| 鄂伦春自治旗| 唐海县| 东光县| 漳浦县| 汶川县| 昭平县| 清徐县| 临泽县| 遵化市| 靖边县| 郓城县| 香港| 莱阳市| 凌海市| 雅江县| 湾仔区| 老河口市| 喀喇沁旗| 宕昌县| 阳信县| 开鲁县| 乡城县| 清水县| 北宁市| 青铜峡市| 怀安县| 常德市| 册亨县| 剑阁县| 白城市| 苗栗市| 长子县| 灵山县| 烟台市| 晋宁县| 徐汇区|