找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Falter
31#
發(fā)表于 2025-3-27 00:19:56 | 只看該作者
Opportunities in Data Science Educationury skills (Sect.?.), interdisciplinary pedagogy (Sect.?.), and professional development for teachers (Sect.?.). We conclude with an interdisciplinary perspective on the opportunities of data science education (Sect.?.).
32#
發(fā)表于 2025-3-27 02:26:28 | 只看該作者
The Data Science Workflowaspects of the different phases of the workflow: data collection (Sect.?.), data preparation (Sect.?.), exploratory data analysis (Sect.?.), modeling (Sect.?.), and communication and action (Sect.?.). We conclude with an interdisciplinary perspective on the data science workflow (Sect.?.).
33#
發(fā)表于 2025-3-27 06:43:13 | 只看該作者
Machine Learning AlgorithmsSect.?.), linear regression (Sect.?.), logistic regression (Sect.?.), and neural networks (Sect.?.). Finally, we discuss interrelations between the interdisciplinarity of data science and the teaching of ML algorithms (Sect.?.).
34#
發(fā)表于 2025-3-27 10:17:32 | 只看該作者
https://doi.org/10.1057/978-1-137-40354-4ct.?.), model complexity (Sect.?.), overfitting and underfitting (Sect.?.), loss function optimization and the gradient descent algorithm (Sect.?.), and regularization (Sect.?.). We conclude this chapter by emphasizing what ML core concepts should be discussed in the context of the application domain (Sect.?.).
35#
發(fā)表于 2025-3-27 17:10:48 | 只看該作者
Core Concepts of Machine Learningct.?.), model complexity (Sect.?.), overfitting and underfitting (Sect.?.), loss function optimization and the gradient descent algorithm (Sect.?.), and regularization (Sect.?.). We conclude this chapter by emphasizing what ML core concepts should be discussed in the context of the application domain (Sect.?.).
36#
發(fā)表于 2025-3-27 19:36:34 | 只看該作者
https://doi.org/10.1007/978-3-662-04698-2 principles we applied in it (Sect.?.), its structure (Sect.?.), and how it can be used by educators who teach data science in different educational frameworks (Sect.?.). Finally, we present several main kinds of learning environments that are appropriate for teaching and learning data science (Sect.?.).
37#
發(fā)表于 2025-3-28 00:17:22 | 只看該作者
September-November: the Approach of War, (Sect.?.), and data science as a profession (Sect.?.). We conclude by highlighting three main characteristics of data science: interdisciplinarity, learner diversity, and its research-oriented nature (Sect.?.).
38#
發(fā)表于 2025-3-28 03:32:47 | 只看該作者
39#
發(fā)表于 2025-3-28 07:04:57 | 只看該作者
40#
發(fā)表于 2025-3-28 13:49:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 11:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
盐亭县| 文山县| 虹口区| 苏尼特右旗| 邵东县| 拉萨市| 荥经县| 金坛市| 灌云县| 三明市| 葫芦岛市| 即墨市| 安达市| 安新县| 酒泉市| 馆陶县| 江阴市| 酒泉市| 泽州县| 犍为县| 蚌埠市| 丘北县| 玉屏| 修文县| 大同县| 安顺市| 金沙县| 井研县| 巴塘县| 蛟河市| 衡阳县| 明水县| 衡阳市| 汉川市| 巍山| 任丘市| 崇左市| 景宁| 肥西县| 萝北县| 山东省|