找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Falter
31#
發(fā)表于 2025-3-27 00:19:56 | 只看該作者
Opportunities in Data Science Educationury skills (Sect.?.), interdisciplinary pedagogy (Sect.?.), and professional development for teachers (Sect.?.). We conclude with an interdisciplinary perspective on the opportunities of data science education (Sect.?.).
32#
發(fā)表于 2025-3-27 02:26:28 | 只看該作者
The Data Science Workflowaspects of the different phases of the workflow: data collection (Sect.?.), data preparation (Sect.?.), exploratory data analysis (Sect.?.), modeling (Sect.?.), and communication and action (Sect.?.). We conclude with an interdisciplinary perspective on the data science workflow (Sect.?.).
33#
發(fā)表于 2025-3-27 06:43:13 | 只看該作者
Machine Learning AlgorithmsSect.?.), linear regression (Sect.?.), logistic regression (Sect.?.), and neural networks (Sect.?.). Finally, we discuss interrelations between the interdisciplinarity of data science and the teaching of ML algorithms (Sect.?.).
34#
發(fā)表于 2025-3-27 10:17:32 | 只看該作者
https://doi.org/10.1057/978-1-137-40354-4ct.?.), model complexity (Sect.?.), overfitting and underfitting (Sect.?.), loss function optimization and the gradient descent algorithm (Sect.?.), and regularization (Sect.?.). We conclude this chapter by emphasizing what ML core concepts should be discussed in the context of the application domain (Sect.?.).
35#
發(fā)表于 2025-3-27 17:10:48 | 只看該作者
Core Concepts of Machine Learningct.?.), model complexity (Sect.?.), overfitting and underfitting (Sect.?.), loss function optimization and the gradient descent algorithm (Sect.?.), and regularization (Sect.?.). We conclude this chapter by emphasizing what ML core concepts should be discussed in the context of the application domain (Sect.?.).
36#
發(fā)表于 2025-3-27 19:36:34 | 只看該作者
https://doi.org/10.1007/978-3-662-04698-2 principles we applied in it (Sect.?.), its structure (Sect.?.), and how it can be used by educators who teach data science in different educational frameworks (Sect.?.). Finally, we present several main kinds of learning environments that are appropriate for teaching and learning data science (Sect.?.).
37#
發(fā)表于 2025-3-28 00:17:22 | 只看該作者
September-November: the Approach of War, (Sect.?.), and data science as a profession (Sect.?.). We conclude by highlighting three main characteristics of data science: interdisciplinarity, learner diversity, and its research-oriented nature (Sect.?.).
38#
發(fā)表于 2025-3-28 03:32:47 | 只看該作者
39#
發(fā)表于 2025-3-28 07:04:57 | 只看該作者
40#
發(fā)表于 2025-3-28 13:49:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东海县| 义乌市| 武清区| 车险| 德化县| 体育| 和龙市| 延安市| 濉溪县| 成武县| 三门峡市| 南平市| 青岛市| 虎林市| 大竹县| 都安| 光泽县| 崇左市| 宜城市| 黄大仙区| 滕州市| 石嘴山市| 涪陵区| 太仆寺旗| 虞城县| 孟津县| 准格尔旗| 克山县| 浙江省| 彭山县| 基隆市| 平谷区| 开远市| 策勒县| 绵阳市| 肥西县| 崇左市| 揭东县| 乌鲁木齐市| 五峰| 科技|