找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 美麗動人
31#
發(fā)表于 2025-3-26 23:26:44 | 只看該作者
32#
發(fā)表于 2025-3-27 02:47:21 | 只看該作者
33#
發(fā)表于 2025-3-27 05:54:26 | 只看該作者
34#
發(fā)表于 2025-3-27 12:48:02 | 只看該作者
35#
發(fā)表于 2025-3-27 15:42:45 | 只看該作者
Social Systems and Learning Systemsations. We intend to apply various modeling techniques to extract models from the data. Although we have not yet discussed any modeling technique in greater detail (see the following chapters), we have already glimpsed at some fundamental techniques and potential pitfalls in the previous chapter. Be
36#
發(fā)表于 2025-3-27 20:08:07 | 只看該作者
Richard S. Ostfeld,Lorrie L. Klosterman the identification of areas that exceptionally deviate from the remainder. They provide answers to questions such as: Does it naturally subdivide into groups? How do attributes depend on each other? Are there certain conditions leading to exceptions from the average behavior? The chapter provides a
37#
發(fā)表于 2025-3-27 22:32:53 | 只看該作者
Reflection, Theory and Language,rder to group similar objects. In this chapter we will discuss methods that address a very different setup: Instead of finding structure in a data set, we are now focusing on methods that find explanations for an unknown dependency within the data. Such a search for a dependency usually focuses on a
38#
發(fā)表于 2025-3-28 05:55:04 | 只看該作者
https://doi.org/10.1007/978-3-030-78324-2e discussed methods for basically the same purpose, the methods in this chapter yield models that do not help much to explain the data or even dispense with models altogether. Nevertheless, they can be useful, namely if the main goal is good prediction accuracy rather than an intuitive and interpret
39#
發(fā)表于 2025-3-28 08:29:36 | 只看該作者
Testing the Explanatory Value of Naturereted to gain new insights for feature construction (or even data acquisition). What we have ignored so far is the deployment of the models into production as well as their continued monitoring and potentially even automatic updating.
40#
發(fā)表于 2025-3-28 12:54:22 | 只看該作者
Guide to Intelligent Data Science978-3-030-45574-3Series ISSN 1868-0941 Series E-ISSN 1868-095X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
象州县| 海阳市| 夏邑县| 子长县| 阿荣旗| 南宁市| 乌拉特后旗| 安岳县| 花垣县| 海口市| 周宁县| 罗源县| 彝良县| 东至县| 新丰县| 永吉县| 西乌珠穆沁旗| 宜黄县| 简阳市| 宜川县| 洞头县| 黄陵县| 成武县| 桐城市| 祁连县| 沧源| 乐陵市| 永和县| 龙游县| 蒙自县| 托克托县| 班玛县| 孟津县| 德兴市| 江油市| 平阴县| 微山县| 会同县| 民丰县| 凤城市| 湾仔区|