找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 美麗動人
31#
發(fā)表于 2025-3-26 23:26:44 | 只看該作者
32#
發(fā)表于 2025-3-27 02:47:21 | 只看該作者
33#
發(fā)表于 2025-3-27 05:54:26 | 只看該作者
34#
發(fā)表于 2025-3-27 12:48:02 | 只看該作者
35#
發(fā)表于 2025-3-27 15:42:45 | 只看該作者
Social Systems and Learning Systemsations. We intend to apply various modeling techniques to extract models from the data. Although we have not yet discussed any modeling technique in greater detail (see the following chapters), we have already glimpsed at some fundamental techniques and potential pitfalls in the previous chapter. Be
36#
發(fā)表于 2025-3-27 20:08:07 | 只看該作者
Richard S. Ostfeld,Lorrie L. Klosterman the identification of areas that exceptionally deviate from the remainder. They provide answers to questions such as: Does it naturally subdivide into groups? How do attributes depend on each other? Are there certain conditions leading to exceptions from the average behavior? The chapter provides a
37#
發(fā)表于 2025-3-27 22:32:53 | 只看該作者
Reflection, Theory and Language,rder to group similar objects. In this chapter we will discuss methods that address a very different setup: Instead of finding structure in a data set, we are now focusing on methods that find explanations for an unknown dependency within the data. Such a search for a dependency usually focuses on a
38#
發(fā)表于 2025-3-28 05:55:04 | 只看該作者
https://doi.org/10.1007/978-3-030-78324-2e discussed methods for basically the same purpose, the methods in this chapter yield models that do not help much to explain the data or even dispense with models altogether. Nevertheless, they can be useful, namely if the main goal is good prediction accuracy rather than an intuitive and interpret
39#
發(fā)表于 2025-3-28 08:29:36 | 只看該作者
Testing the Explanatory Value of Naturereted to gain new insights for feature construction (or even data acquisition). What we have ignored so far is the deployment of the models into production as well as their continued monitoring and potentially even automatic updating.
40#
發(fā)表于 2025-3-28 12:54:22 | 只看該作者
Guide to Intelligent Data Science978-3-030-45574-3Series ISSN 1868-0941 Series E-ISSN 1868-095X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐陵市| 石阡县| 东乌珠穆沁旗| 荔波县| 黎川县| 卢龙县| 格尔木市| 平邑县| 福州市| 台北市| 武威市| 五大连池市| 九寨沟县| 普兰县| 城步| 新营市| 吉林省| 屯昌县| 那曲县| 甘孜县| 乐昌市| 邵阳市| 东乡族自治县| 雷波县| 乌审旗| 巨野县| 乌拉特前旗| 且末县| 探索| 博白县| 凤翔县| 牙克石市| 惠州市| 邵武市| 揭阳市| 忻州市| 凤山县| 眉山市| 屯留县| 尼勒克县| 繁昌县|