找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 美麗動人
31#
發(fā)表于 2025-3-26 23:26:44 | 只看該作者
32#
發(fā)表于 2025-3-27 02:47:21 | 只看該作者
33#
發(fā)表于 2025-3-27 05:54:26 | 只看該作者
34#
發(fā)表于 2025-3-27 12:48:02 | 只看該作者
35#
發(fā)表于 2025-3-27 15:42:45 | 只看該作者
Social Systems and Learning Systemsations. We intend to apply various modeling techniques to extract models from the data. Although we have not yet discussed any modeling technique in greater detail (see the following chapters), we have already glimpsed at some fundamental techniques and potential pitfalls in the previous chapter. Be
36#
發(fā)表于 2025-3-27 20:08:07 | 只看該作者
Richard S. Ostfeld,Lorrie L. Klosterman the identification of areas that exceptionally deviate from the remainder. They provide answers to questions such as: Does it naturally subdivide into groups? How do attributes depend on each other? Are there certain conditions leading to exceptions from the average behavior? The chapter provides a
37#
發(fā)表于 2025-3-27 22:32:53 | 只看該作者
Reflection, Theory and Language,rder to group similar objects. In this chapter we will discuss methods that address a very different setup: Instead of finding structure in a data set, we are now focusing on methods that find explanations for an unknown dependency within the data. Such a search for a dependency usually focuses on a
38#
發(fā)表于 2025-3-28 05:55:04 | 只看該作者
https://doi.org/10.1007/978-3-030-78324-2e discussed methods for basically the same purpose, the methods in this chapter yield models that do not help much to explain the data or even dispense with models altogether. Nevertheless, they can be useful, namely if the main goal is good prediction accuracy rather than an intuitive and interpret
39#
發(fā)表于 2025-3-28 08:29:36 | 只看該作者
Testing the Explanatory Value of Naturereted to gain new insights for feature construction (or even data acquisition). What we have ignored so far is the deployment of the models into production as well as their continued monitoring and potentially even automatic updating.
40#
發(fā)表于 2025-3-28 12:54:22 | 只看該作者
Guide to Intelligent Data Science978-3-030-45574-3Series ISSN 1868-0941 Series E-ISSN 1868-095X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永寿县| 东光县| 夏河县| 浑源县| 建阳市| 宜宾县| 汝城县| 成武县| 土默特右旗| 玛曲县| 临洮县| 渑池县| 许昌市| 黄山市| 保山市| 庄河市| 昂仁县| 通河县| 和田县| 长汀县| 湟中县| 莱州市| 弥渡县| 辽中县| 新兴县| 绥滨县| 合川市| 镇宁| 神农架林区| 祁连县| 松阳县| 兖州市| 水城县| 郎溪县| 济阳县| 松江区| 萨迦县| 云阳县| 苍山县| 广水市| 新兴县|