找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 10448|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:12:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Guide to Convolutional Neural Networks
編輯Hamed Habibi Aghdam,Elnaz Jahani Heravi
視頻videohttp://file.papertrans.cn/391/390813/390813.mp4
圖書(shū)封面Titlebook: ;
出版日期Book 2017
版次1
doihttps://doi.org/10.1007/978-3-319-57550-6
isbn_softcover978-3-319-86190-6
isbn_ebook978-3-319-57550-6
The information of publication is updating

書(shū)目名稱(chēng)Guide to Convolutional Neural Networks影響因子(影響力)




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks被引頻次




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks被引頻次學(xué)科排名




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks年度引用




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks年度引用學(xué)科排名




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks讀者反饋




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:11 | 只看該作者
Convolutional Neural Networks,d some of the libraries that are commonly used for training deep networks. In addition, common metrics (i.e., classification accuracy, confusion matrix, precision, recall, and F1 score) for evaluating classification models were mentioned together with their advantages and disadvantages. Two importan
板凳
發(fā)表于 2025-3-22 03:18:41 | 只看該作者
地板
發(fā)表于 2025-3-22 08:32:24 | 只看該作者
Visualizing Neural Networks,ion was regularized using . norm of the image. In the second method, gradient of a particular neuron was computed with respect to the input image and it is illustrated by computing its magnitude. The third method formulated the visualizing problem as an image reconstruction problem. To be more speci
5#
發(fā)表于 2025-3-22 12:24:12 | 只看該作者
6#
發(fā)表于 2025-3-22 13:55:28 | 只看該作者
7#
發(fā)表于 2025-3-22 19:57:19 | 只看該作者
Small States and the European Migrant Crisis can be used for creating ensemble of models. Then, a method based on optimal subset selection using genetic algorithms were discussed. This way, we create ensembles with minimum number of models that together they increase the classification accuracy. After that, we showed how to interpret and anal
8#
發(fā)表于 2025-3-22 23:21:26 | 只看該作者
https://doi.org/10.1007/978-3-642-20766-2ion was regularized using . norm of the image. In the second method, gradient of a particular neuron was computed with respect to the input image and it is illustrated by computing its magnitude. The third method formulated the visualizing problem as an image reconstruction problem. To be more speci
9#
發(fā)表于 2025-3-23 03:24:03 | 只看該作者
Traffic Sign Detection and Recognition,work in the field of traffic sign detection and classification is also reviewed. We mentioned several methods based on hand-crafted features and then introduced the idea behind feature learning. Then, we explained some of the works based on convolutional neural networks.
10#
發(fā)表于 2025-3-23 05:42:01 | 只看該作者
Caffe Library,lications. In this chapter, we explained how to design and train neural networks using the Caffe library. Moreover, the Python interface of Caffe was discussed using real examples. Then, we mentioned how to develop new layers in Python and use them in neural networks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永寿县| 井陉县| 金寨县| 晋宁县| 杂多县| 囊谦县| 区。| 渝北区| 营口市| 肥西县| 漳浦县| 公安县| 罗江县| 商南县| 临颍县| 密山市| 呼和浩特市| 漳州市| 连云港市| 九台市| 汾阳市| 达日县| 莆田市| 隆德县| 蓝山县| 禹城市| 新巴尔虎左旗| 奉新县| 德江县| 东平县| 新乡县| 林周县| 崇义县| 天水市| 陇川县| 仲巴县| 前郭尔| 滦平县| 通许县| 湟源县| 海丰县|