找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 51077|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:27:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Guaranteed Accuracy in Numerical Linear Algebra
編輯S. K. Godunov,A. G. Antonov,V. I. Kostin
視頻videohttp://file.papertrans.cn/391/390742/390742.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: ;
出版日期Book 1993
版次1
doihttps://doi.org/10.1007/978-94-011-1952-8
isbn_softcover978-94-010-4863-7
isbn_ebook978-94-011-1952-8
The information of publication is updating

書目名稱Guaranteed Accuracy in Numerical Linear Algebra影響因子(影響力)




書目名稱Guaranteed Accuracy in Numerical Linear Algebra影響因子(影響力)學(xué)科排名




書目名稱Guaranteed Accuracy in Numerical Linear Algebra網(wǎng)絡(luò)公開度




書目名稱Guaranteed Accuracy in Numerical Linear Algebra網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Guaranteed Accuracy in Numerical Linear Algebra被引頻次




書目名稱Guaranteed Accuracy in Numerical Linear Algebra被引頻次學(xué)科排名




書目名稱Guaranteed Accuracy in Numerical Linear Algebra年度引用




書目名稱Guaranteed Accuracy in Numerical Linear Algebra年度引用學(xué)科排名




書目名稱Guaranteed Accuracy in Numerical Linear Algebra讀者反饋




書目名稱Guaranteed Accuracy in Numerical Linear Algebra讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:17:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:03:04 | 只看該作者
Shrinking Cities and First Suburbsh canonical form is called the singular value decomposition. In what follows we will use the well-known polar decomposition, which is recalled in Section 1 in course of discussion of singular value decomposition of square matrices.
地板
發(fā)表于 2025-3-22 06:10:03 | 只看該作者
New technologies — new rules, old adagesfrom a product of matrices of two—dimensional Jacobi rotations (chains of two—dimensional rotations). Such orthogonal transformations were used by Voyevodin [46], Rutshauzer [41], Golub and Kahan [20], Kublanovskaya [28], and Francis [12].
5#
發(fā)表于 2025-3-22 10:50:38 | 只看該作者
Charles S. Carver,Michael F. Scheiersented here, are used to construct the orthogonal transformations in deflation algorithms for band matrices. The accurate calculation of these sequences allows to avoid the iteration scheme of algorithms and to find the parameters of orthogonal transformations from the elements of two—side Sturm sequence.
6#
發(fā)表于 2025-3-22 15:21:52 | 只看該作者
Singular Value Decomposition,h canonical form is called the singular value decomposition. In what follows we will use the well-known polar decomposition, which is recalled in Section 1 in course of discussion of singular value decomposition of square matrices.
7#
發(fā)表于 2025-3-22 18:08:19 | 只看該作者
8#
發(fā)表于 2025-3-23 00:53:06 | 只看該作者
Sturm Sequences of Tridiagonal Matrices,sented here, are used to construct the orthogonal transformations in deflation algorithms for band matrices. The accurate calculation of these sequences allows to avoid the iteration scheme of algorithms and to find the parameters of orthogonal transformations from the elements of two—side Sturm sequence.
9#
發(fā)表于 2025-3-23 01:54:03 | 只看該作者
Shrinking Cities and First Suburbsh canonical form is called the singular value decomposition. In what follows we will use the well-known polar decomposition, which is recalled in Section 1 in course of discussion of singular value decomposition of square matrices.
10#
發(fā)表于 2025-3-23 08:28:55 | 只看該作者
New technologies — new rules, old adagesfrom a product of matrices of two—dimensional Jacobi rotations (chains of two—dimensional rotations). Such orthogonal transformations were used by Voyevodin [46], Rutshauzer [41], Golub and Kahan [20], Kublanovskaya [28], and Francis [12].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拜城县| 承德市| 万宁市| 潜江市| 漳浦县| 白河县| 博野县| 桐乡市| 德钦县| 枞阳县| 凉城县| 无极县| 剑阁县| 洞口县| 陆良县| 贡山| 隆回县| 南和县| 绥德县| 乌兰浩特市| 张家口市| 岱山县| 合川市| 灵山县| 阳曲县| 临邑县| 屏东市| 蒙城县| 前郭尔| 兴山县| 文化| 孝昌县| 双流县| 台中市| 无棣县| 普宁市| 都江堰市| 松桃| 龙游县| 韶关市| 十堰市|