找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Strategy
21#
發(fā)表于 2025-3-25 04:57:18 | 只看該作者
22#
發(fā)表于 2025-3-25 09:38:54 | 只看該作者
Garben,Der Garbenbegriff geh?rt zum Grundvokabular der modernen Geometrie und Topologie. Er dient der Formalisierung des überganges vom Lokalen zum Globalen. Richtig betrieben kann die Garbentheorie sogar zum Studium von Grundlagen der Logik verwendet werden. Nach diesen S?tzen ahnt man schon die Allgemeinheit dieser Theorie.
23#
發(fā)表于 2025-3-25 13:08:29 | 只看該作者
Zusammenhang und Trennung,Solche Eigenschaften nennt man topologisch. Die wichtigsten sind Zusammenhang, Trennungsaussagen und Kompaktheit. Die ersten beiden werden in diesem Kapitel diskutiert, die letzte dann im n?chsten Kapitel.
24#
發(fā)表于 2025-3-25 15:49:36 | 只看該作者
Wege und Schleifen,n: Sie werden diskretisiert, indem man die R?ume durch die Menge ihrer Wegekomponenten ersetzt. Feinere Diskretisierungsmethoden erh?lt man dadurch, dass man die R?ume erst durch Hilfsr?ume ersetzt und dann zu den Wegekomponenten übergeht. Die resultierenden Mengen haben dann oft eine algebraische S
25#
發(fā)表于 2025-3-25 22:40:30 | 只看該作者
Die Fundamentalgruppe,und ihre Eigenschaften studiert. Man darf sich das zun?chst so vorstellen, dass Abbildungen vom Kreis . in einen topologischen Raum ., welche die 1 auf einen Punkt . abbilden, immer einen??verallgemeinerten Abbildungsgrad‘ haben, der allerdings nicht in ., sondern eben in der Fundamentalgruppe . lie
26#
發(fā)表于 2025-3-26 00:52:14 | 只看該作者
,überlagerungen,Helix über die Kreislinie legte und sie damit ?überlagerte‘. Solche Abbildungen sollen in diesem Kapitel betrachtet werden. Das Hochhebungsverhalten von Wegen in überlagerungen kann genutzt werden, um Fundamentalgruppen auszurechnen. Die Verbindung zwischen Fundamentalgruppe und überlagerungen ist a
27#
發(fā)表于 2025-3-26 07:53:11 | 只看該作者
28#
發(fā)表于 2025-3-26 09:26:48 | 只看該作者
Wiwik Dwi Pratiwi,Indah Susanti,SamsirinaSolche Eigenschaften nennt man topologisch. Die wichtigsten sind Zusammenhang, Trennungsaussagen und Kompaktheit. Die ersten beiden werden in diesem Kapitel diskutiert, die letzte dann im n?chsten Kapitel.
29#
發(fā)表于 2025-3-26 14:51:35 | 只看該作者
30#
發(fā)表于 2025-3-26 17:25:42 | 只看該作者
Qiang Li,Huachun Han,Weijia Tangund ihre Eigenschaften studiert. Man darf sich das zun?chst so vorstellen, dass Abbildungen vom Kreis . in einen topologischen Raum ., welche die 1 auf einen Punkt . abbilden, immer einen??verallgemeinerten Abbildungsgrad‘ haben, der allerdings nicht in ., sondern eben in der Fundamentalgruppe . lie
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣化县| 临湘市| 高尔夫| 云浮市| 新安县| 兖州市| 芜湖市| 上栗县| 昭觉县| 孟津县| 石门县| 松江区| 平定县| 河津市| 泗洪县| 手机| 新竹市| 泽普县| 万州区| 宜春市| 刚察县| 潍坊市| 九龙城区| 渑池县| 兴义市| 苍山县| 儋州市| 杭锦后旗| 阿拉善左旗| 墨江| 牙克石市| 安化县| 栾川县| 株洲县| 满洲里市| 通榆县| 玉林市| 花垣县| 泸定县| 丹江口市| 安丘市|