找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
查看: 53679|回復: 35
樓主
發(fā)表于 2025-3-21 18:26:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Groups, Rings and Fields
編輯D. A. R. Wallace
視頻videohttp://file.papertrans.cn/390/389015/389015.mp4
叢書名稱Springer Undergraduate Mathematics Series
圖書封面Titlebook: ;
出版日期Textbook 1998
版次1
doihttps://doi.org/10.1007/978-1-4471-0425-4
isbn_softcover978-3-540-76177-8
isbn_ebook978-1-4471-0425-4Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
The information of publication is updating

書目名稱Groups, Rings and Fields影響因子(影響力)




書目名稱Groups, Rings and Fields影響因子(影響力)學科排名




書目名稱Groups, Rings and Fields網絡公開度




書目名稱Groups, Rings and Fields網絡公開度學科排名




書目名稱Groups, Rings and Fields被引頻次




書目名稱Groups, Rings and Fields被引頻次學科排名




書目名稱Groups, Rings and Fields年度引用




書目名稱Groups, Rings and Fields年度引用學科排名




書目名稱Groups, Rings and Fields讀者反饋




書目名稱Groups, Rings and Fields讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:18:28 | 只看該作者
Introduction to Rings,apparent that we need to consider much more precisely the extent to which integers and polynomials share common features. In this way we shall be led to enunciate axioms for an algebraic system called a ‘ring’ and for a ring of a particular type called an ‘integral domain’ which incorporates some of the features common to integers and polynomials.
板凳
發(fā)表于 2025-3-22 02:44:41 | 只看該作者
地板
發(fā)表于 2025-3-22 08:19:51 | 只看該作者
The Integers, ganze Zahl schuf der liebe Gott; alles übrige ist Menschenwerk” which we may render in English as “God created the integers; everything else is man’s handiwork”. (Quotation from Philosophie der Mathematik und Naturwissenschaft by H. Weyl, R. Oldenburg, München, 1928, Section 6, page 27).
5#
發(fā)表于 2025-3-22 09:14:46 | 只看該作者
6#
發(fā)表于 2025-3-22 14:26:31 | 只看該作者
Introduction to Kinetic Theory of Plasma,o, three, …”, “eins, zwei, drei, …”, “y?, èr, san,…”, or their equivalent, in whatever may be our mother tongue. By childhood we have assimilated, without too much conscious effort, the elementary properties of the addition, subtraction, multiplication and division of the natural numbers; in this te
7#
發(fā)表于 2025-3-22 17:06:20 | 只看該作者
J. B. A. Mitchell,J. Wm. McGowandean Algorithm for finding the greatest common divisor of two given integers. ‘Polynomials’ share many properties in common with the integers, having a division algorithm and a corresponding Euclidean Algorithm. As our treatment of polynomials proceeds, initially somewhat informally, it will become
8#
發(fā)表于 2025-3-23 00:34:06 | 只看該作者
9#
發(fā)表于 2025-3-23 03:22:31 | 只看該作者
10#
發(fā)表于 2025-3-23 06:01:34 | 只看該作者
Sets and Mappings, and mappings may lead to a better understanding of the underlying mathematical processes. We shall outline those aspects of sets and mappings which are relevant to present purposes and, for the delectation of the reader, conclude with a few logical paradoxes in regard to sets.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 02:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
百色市| 柳河县| 上栗县| 吴堡县| 类乌齐县| 徐闻县| 冀州市| 永清县| 交口县| 哈密市| 嘉义市| 娱乐| 郴州市| 全椒县| 桃江县| 旬阳县| 双柏县| 华池县| 舟山市| 汾阳市| 沙田区| 徐汇区| 巩义市| 汕尾市| 湄潭县| 盖州市| 文昌市| 黔江区| 福泉市| 乳源| 扎赉特旗| 上思县| 汉川市| 常熟市| 当雄县| 襄樊市| 凤山市| 江北区| 岢岚县| 黔南| 郸城县|