找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 39813|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:56:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Groups, Invariants, Integrals, and Mathematical Physics
編輯Maria Ulan,Stanislav Hronek
視頻videohttp://file.papertrans.cn/390/389011/389011.mp4
叢書(shū)名稱Tutorials, Schools, and Workshops in the Mathematical Sciences
圖書(shū)封面Titlebook: ;
出版日期Book 2023
版次1
doihttps://doi.org/10.1007/978-3-031-25666-0
isbn_softcover978-3-031-25668-4
isbn_ebook978-3-031-25666-0Series ISSN 2522-0969 Series E-ISSN 2522-0977
issn_series 2522-0969
The information of publication is updating

書(shū)目名稱Groups, Invariants, Integrals, and Mathematical Physics影響因子(影響力)




書(shū)目名稱Groups, Invariants, Integrals, and Mathematical Physics影響因子(影響力)學(xué)科排名




書(shū)目名稱Groups, Invariants, Integrals, and Mathematical Physics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Groups, Invariants, Integrals, and Mathematical Physics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Groups, Invariants, Integrals, and Mathematical Physics被引頻次




書(shū)目名稱Groups, Invariants, Integrals, and Mathematical Physics被引頻次學(xué)科排名




書(shū)目名稱Groups, Invariants, Integrals, and Mathematical Physics年度引用




書(shū)目名稱Groups, Invariants, Integrals, and Mathematical Physics年度引用學(xué)科排名




書(shū)目名稱Groups, Invariants, Integrals, and Mathematical Physics讀者反饋




書(shū)目名稱Groups, Invariants, Integrals, and Mathematical Physics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:38:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:43:19 | 只看該作者
地板
發(fā)表于 2025-3-22 04:45:03 | 只看該作者
Lectures on Poisson Algebras,The notion of a Poisson algebra was probably introduced in the first time by A.M. Vinogradov and J. S. Krasil’shchik in 1975 under the name “canonical algebra” and by J. Braconnier in his short note “Algèbres de Poisson” (Comptes rendus Ac.Sci) in 1977.
5#
發(fā)表于 2025-3-22 10:46:25 | 只看該作者
Fundamental Groupoids and Homotopy Types of Non-compact Surfaces,The paper contains an application of van Kampen theorem for groupoids to computation of homotopy types of certain class of non-compact foliated surfaces obtained by at most countably many strips . with boundary intervals in . along some of those intervals.
6#
發(fā)表于 2025-3-22 13:47:54 | 只看該作者
The Earth, atmosphere and weather,an algebraic manifold, while from the differential viewpoint a quotient is a differential equation. The main goal of these lectures is to show that the differential approach gives us a better understanding of structure of invariants and orbit spaces. We illustrate this on classical equivalence probl
7#
發(fā)表于 2025-3-22 18:01:59 | 只看該作者
Masataka Fukugita,Tsutomu Yanagidaial equations and first-order Lagrangians. This condition is based on comparing effective differential forms on the first jet bundle. To illustrate and apply our approach, we study the linear Klein-Gordon equation, first and second heavenly equations of Plebański, Grant equation, and Husain equation
8#
發(fā)表于 2025-3-22 23:10:42 | 只看該作者
9#
發(fā)表于 2025-3-23 03:19:25 | 只看該作者
Abraham Lerman,Dieter M. Imboden,Joel R. Gatf smooth manifolds. In particular, it can be used to compare those aspects of field theories (e.g. of classical (Newtonian) mechanics, hydrodynamics, electrodynamics, relativity theory, classical Yang-Mills theory and so on) that are described by such equations..Employing a geometric (jet space) app
10#
發(fā)表于 2025-3-23 05:53:32 | 只看該作者
Differential Invariants in Algebra,an algebraic manifold, while from the differential viewpoint a quotient is a differential equation. The main goal of these lectures is to show that the differential approach gives us a better understanding of structure of invariants and orbit spaces. We illustrate this on classical equivalence probl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌黎县| 平乐县| 昭平县| 淮安市| 浦城县| 邯郸市| 大名县| 兰坪| 高碑店市| 高密市| 靖宇县| 潞城市| 区。| 贞丰县| 敦煌市| 那曲县| 萨嘎县| 清新县| 乌兰察布市| 汾阳市| 灵丘县| 天全县| 昆山市| 布尔津县| 昌宁县| 婺源县| 台南市| 仙游县| 马边| 贵溪市| 永昌县| 定远县| 临高县| 白沙| 韩城市| 沾益县| 皋兰县| 清镇市| 泽普县| 石楼县| 杂多县|