找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Blandishment
11#
發(fā)表于 2025-3-23 12:41:12 | 只看該作者
Non-orientable and orientable regular maps,ble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
12#
發(fā)表于 2025-3-23 17:52:47 | 只看該作者
13#
發(fā)表于 2025-3-23 21:40:14 | 只看該作者
14#
發(fā)表于 2025-3-24 00:06:18 | 只看該作者
Albrecht Neftel,Andreas Sigg,Peter Jacobble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
15#
發(fā)表于 2025-3-24 04:41:59 | 只看該作者
16#
發(fā)表于 2025-3-24 07:07:30 | 只看該作者
17#
發(fā)表于 2025-3-24 11:50:44 | 只看該作者
A. Iqbal,B. Medinger,R. B. McKayis transcendental as an element of .. Unlike the groupoid cases ([1], [5]) and the case when ..+..+···+..=1 ([2]), the basis problems for the equational theories of the above .-groupoids or the above classes are not so simple.
18#
發(fā)表于 2025-3-24 15:07:01 | 只看該作者
On n-groupoids defined on fields,is transcendental as an element of .. Unlike the groupoid cases ([1], [5]) and the case when ..+..+···+..=1 ([2]), the basis problems for the equational theories of the above .-groupoids or the above classes are not so simple.
19#
發(fā)表于 2025-3-24 22:02:20 | 只看該作者
Groups with many elliptic subgroups, G be a finitely generated solvable group. It is shown that . has many elliptic pairs of subgroups if and only if . is finite-by-nilpotent. It is also shown that if . is finitely generated, torsion-free and residually finite .-group, for some prime ., then . has many elliptic pairs of subgroups if and only if . is nilpotent.
20#
發(fā)表于 2025-3-24 23:37:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三亚市| 铅山县| 新化县| 乌兰浩特市| 瓦房店市| 青神县| 中西区| 台南市| 昂仁县| 佳木斯市| 孝义市| 连山| 南雄市| 彰武县| 盘锦市| 南康市| 西藏| 灌阳县| 上犹县| 柳州市| 刚察县| 八宿县| 塔河县| 闽清县| 安顺市| 连南| 依安县| 长宁县| 志丹县| 洪泽县| 德格县| 涞源县| 武冈市| 斗六市| 泗阳县| 偏关县| 德兴市| 保康县| 东明县| 唐河县| 烟台市|