找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Blandishment
11#
發(fā)表于 2025-3-23 12:41:12 | 只看該作者
Non-orientable and orientable regular maps,ble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
12#
發(fā)表于 2025-3-23 17:52:47 | 只看該作者
13#
發(fā)表于 2025-3-23 21:40:14 | 只看該作者
14#
發(fā)表于 2025-3-24 00:06:18 | 只看該作者
Albrecht Neftel,Andreas Sigg,Peter Jacobble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
15#
發(fā)表于 2025-3-24 04:41:59 | 只看該作者
16#
發(fā)表于 2025-3-24 07:07:30 | 只看該作者
17#
發(fā)表于 2025-3-24 11:50:44 | 只看該作者
A. Iqbal,B. Medinger,R. B. McKayis transcendental as an element of .. Unlike the groupoid cases ([1], [5]) and the case when ..+..+···+..=1 ([2]), the basis problems for the equational theories of the above .-groupoids or the above classes are not so simple.
18#
發(fā)表于 2025-3-24 15:07:01 | 只看該作者
On n-groupoids defined on fields,is transcendental as an element of .. Unlike the groupoid cases ([1], [5]) and the case when ..+..+···+..=1 ([2]), the basis problems for the equational theories of the above .-groupoids or the above classes are not so simple.
19#
發(fā)表于 2025-3-24 22:02:20 | 只看該作者
Groups with many elliptic subgroups, G be a finitely generated solvable group. It is shown that . has many elliptic pairs of subgroups if and only if . is finite-by-nilpotent. It is also shown that if . is finitely generated, torsion-free and residually finite .-group, for some prime ., then . has many elliptic pairs of subgroups if and only if . is nilpotent.
20#
發(fā)表于 2025-3-24 23:37:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸州市| 海安县| 漳浦县| 永川市| 巴里| 巩义市| 会东县| 达拉特旗| 梅州市| 济阳县| 凉山| 威远县| 太湖县| 和顺县| 桃江县| 长葛市| 杂多县| 丹阳市| 江孜县| 武夷山市| 三都| 安吉县| 礼泉县| 依兰县| 吴川市| 江城| 洞头县| 开远市| 乌拉特中旗| 宝应县| 洪江市| 紫云| 大姚县| 靖远县| 抚远县| 兴仁县| 思茅市| 鸡东县| 靖安县| 祁阳县| 海安县|