找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 29828|回復(fù): 39
樓主
發(fā)表于 2025-3-21 17:34:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Groupoid Metrization Theory
編輯Dorina Mitrea,Irina Mitrea,Sylvie Monniaux
視頻videohttp://file.papertrans.cn/389/388986/388986.mp4
叢書(shū)名稱(chēng)Applied and Numerical Harmonic Analysis
圖書(shū)封面Titlebook: ;
出版日期Book 2013
版次1
doihttps://doi.org/10.1007/978-0-8176-8397-9
isbn_ebook978-0-8176-8397-9Series ISSN 2296-5009 Series E-ISSN 2296-5017
issn_series 2296-5009
The information of publication is updating

書(shū)目名稱(chēng)Groupoid Metrization Theory影響因子(影響力)




書(shū)目名稱(chēng)Groupoid Metrization Theory影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Groupoid Metrization Theory網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Groupoid Metrization Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Groupoid Metrization Theory被引頻次




書(shū)目名稱(chēng)Groupoid Metrization Theory被引頻次學(xué)科排名




書(shū)目名稱(chēng)Groupoid Metrization Theory年度引用




書(shū)目名稱(chēng)Groupoid Metrization Theory年度引用學(xué)科排名




書(shū)目名稱(chēng)Groupoid Metrization Theory讀者反饋




書(shū)目名稱(chēng)Groupoid Metrization Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:43 | 只看該作者
Scale-Up from Laboratory to Plant,ded and a structure theorem for semigroupoids established. On the topological side, the notion of topological groupoid is introduced and studied. To set the stage for future metrization results, the concept of partially defined distance is also considered here.
板凳
發(fā)表于 2025-3-22 01:46:43 | 只看該作者
地板
發(fā)表于 2025-3-22 04:36:30 | 只看該作者
Introduction, Alexandroff–Urysohn metrization theorem for uniform spaces. The metrization theorem in question is quantitative in nature and involves starting from a given quasisubadditive function defined on the underlying groupoid. We also indicate that our general metrization theorem is sharp.
5#
發(fā)表于 2025-3-22 10:51:20 | 只看該作者
Semigroupoids and Groupoids,ded and a structure theorem for semigroupoids established. On the topological side, the notion of topological groupoid is introduced and studied. To set the stage for future metrization results, the concept of partially defined distance is also considered here.
6#
發(fā)表于 2025-3-22 14:03:29 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:38 | 只看該作者
8#
發(fā)表于 2025-3-23 00:02:23 | 只看該作者
Applications to Analysis on Quasimetric Spaces,yond which the H?lder spaces become trivial. Other applications are targeted to Hardy spaces on spaces of homogeneous type, regularized distance, Whitney decompositions, and partitions of unity, as well as the Gromov–Pompeiu–Hausdorff distance.
9#
發(fā)表于 2025-3-23 02:41:55 | 只看該作者
10#
發(fā)表于 2025-3-23 06:07:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保康县| 阿尔山市| 靖西县| 北京市| 蒲城县| 景德镇市| 寿阳县| 龙胜| 资溪县| 商都县| 大城县| 称多县| 娱乐| 赣榆县| 呈贡县| 彩票| 潢川县| 察雅县| 大田县| 祁连县| 东莞市| 南昌县| 金坛市| 运城市| 洞头县| 洛南县| 崇州市| 邓州市| 庐江县| 南陵县| 清涧县| 任丘市| 绥宁县| 疏附县| 东安县| 莱西市| 吴忠市| 玛纳斯县| 永川市| 南郑县| 启东市|