找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Arthur
21#
發(fā)表于 2025-3-25 05:32:22 | 只看該作者
22#
發(fā)表于 2025-3-25 08:42:21 | 只看該作者
23#
發(fā)表于 2025-3-25 13:42:27 | 只看該作者
Exactly integrable quantum dynamical systems, representations, in particular in the Schr?dinger or Heisenberg ones. For the systems under study in the one-dimensional case we can solve the problem in both these representations. In the Schr?dinger representation the wave functions are the matrix elements of the principal continuous series of un
24#
發(fā)表于 2025-3-25 17:57:29 | 只看該作者
Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems
25#
發(fā)表于 2025-3-25 22:17:04 | 只看該作者
Exactly integrable quantum dynamical systems,miltonian, whereas the second one with a factor λ describes the interaction in the system with the coupling constant λ. In complete analogy with the classical consideration the series of the perturbation theory are polynomials in λ and reproduce an exact solution of the corresponding system. In the
26#
發(fā)表于 2025-3-26 00:38:29 | 只看該作者
27#
發(fā)表于 2025-3-26 05:43:21 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:51 | 只看該作者
29#
發(fā)表于 2025-3-26 13:47:54 | 只看該作者
Elastin in Vascular Grafts, research, clinically translatable solutions remain limited. Recent progress in vascular graft engineering has highlighted the significance of biological integration for the success of implanted grafts. Thus there has been an increase in the usage of biological materials in vascular graft manufactur
30#
發(fā)表于 2025-3-26 18:35:32 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
喀喇沁旗| 迁安市| 安吉县| 巴林左旗| 安西县| 陆良县| 华安县| 习水县| 托克逊县| 阳信县| 保靖县| 呼玛县| 洪洞县| 万安县| 五华县| 广安市| 上高县| 威海市| 泾阳县| 毕节市| 津南区| 健康| 西平县| 祁东县| 南丹县| 临武县| 瑞昌市| 德兴市| 五台县| 丽水市| 广灵县| 武邑县| 阳春市| 古丈县| 垫江县| 砀山县| 元氏县| 远安县| 米脂县| 介休市| 岑溪市|