找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 48736|回復(fù): 38
樓主
發(fā)表于 2025-3-21 16:36:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems
編輯A. N. Leznov,M. V. Saveliev
視頻videohttp://file.papertrans.cn/389/388970/388970.mp4
叢書名稱Progress in Mathematical Physics
圖書封面Titlebook: ;
出版日期Book 1992
版次1
doihttps://doi.org/10.1007/978-3-0348-8638-3
isbn_softcover978-3-0348-9709-9
isbn_ebook978-3-0348-8638-3Series ISSN 1544-9998 Series E-ISSN 2197-1846
issn_series 1544-9998
The information of publication is updating

書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems影響因子(影響力)




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems影響因子(影響力)學(xué)科排名




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems網(wǎng)絡(luò)公開度




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems被引頻次




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems被引頻次學(xué)科排名




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems年度引用




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems年度引用學(xué)科排名




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems讀者反饋




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:35:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:05:59 | 只看該作者
地板
發(fā)表于 2025-3-22 04:45:24 | 只看該作者
Representations of complex semisimple Lie groups and their real forms,All the Lie algebras and Lie groups considered in this chapter are finite-dimensional; sometimes without mentioning this specifically we confine ourselves to a reductive Lie group, i.e., to a direct product of a simple group by a 1-dimensional center.
5#
發(fā)表于 2025-3-22 12:32:41 | 只看該作者
Integration of nonlinear dynamical systems associated with finite-dimensional Lie algebras,In this chapter we will explicitly construct general solutions for a number of concrete two-dimensional classical nonlinear systems of the type (3.1.4) associated with finite-dimensional Lie algebras. Moreover, in the cases where the one-dimensional (or parametric) solutions are important in applications we perform the necessary reduction.
6#
發(fā)表于 2025-3-22 14:51:46 | 只看該作者
7#
發(fā)表于 2025-3-22 17:28:47 | 只看該作者
Internal symmetries of integrable dynamical systems, description of all their gradings. Therefore, though we can describe explicitly via the general construction the group element uniquely determining the corresponding solutions we cannot describe in terms of a Lie group or its Lie algebra a compact form of the equations themselves.
8#
發(fā)表于 2025-3-22 23:52:28 | 只看該作者
Background of the theory of Lie algebras and Lie groups and their representations,text which describes a group method for integrating a broad class of nonlinear equations of theoretical and mathematical physics. We refer the reader to excellent monographs in this area of mathematics for a deeper and more detailed knowledge (see, e.g., [12, 27, 35, 36, 51, 95, 99, 101, 112–115]).
9#
發(fā)表于 2025-3-23 01:21:38 | 只看該作者
10#
發(fā)表于 2025-3-23 09:12:16 | 只看該作者
Scalar Lax-pairs and soliton solutions of the generalized periodic Toda lattice,ns considerably and, moreover, in principle enables one to perform them. The approach suggested in what follows is invariant with respect to a concrete representation of the algebra of internal symmetries and appeals directly to the properties of the algebra.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 于田县| 双江| 如皋市| 个旧市| 桂林市| 翁牛特旗| 南城县| 玉田县| 霸州市| 福建省| 辰溪县| 洛川县| 噶尔县| 定安县| 长沙市| 逊克县| 体育| 梓潼县| 南阳市| 辽源市| 班玛县| 仁化县| 墨江| 莒南县| 泽州县| 宁阳县| 洱源县| 马鞍山市| 昌宁县| 桐乡市| 大理市| 南京市| 会同县| 永宁县| 黑水县| 墨江| 措美县| 营山县| 通州区| 格尔木市|