找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 武士精神
11#
發(fā)表于 2025-3-23 11:03:49 | 只看該作者
On Right Conjugacy Closed Loops of Twice Prime Order,The right conjugacy closed loops of order 2., where . is an odd prime, are classified up to isomorphism.
12#
發(fā)表于 2025-3-23 15:50:23 | 只看該作者
Compatible Actions and Non-abelian Tensor Products,For a pair of groups .,?., we study pairs of actions . on . and . on . such that these pairs are compatible. We prove that there are nilpotent group . and some group . such that for . the derivative group [.,?.] is equal to .. Also, we prove that if . act by inversion on an abelian group ., then the non-abelian tensor product . is isomorphic to ..
13#
發(fā)表于 2025-3-23 18:36:01 | 只看該作者
14#
發(fā)表于 2025-3-24 00:04:25 | 只看該作者
Properties of Finite and Periodic Groups Determined by Their Element Orders (A Survey),Let . be a finite group. The function .assigns to . the set of orders of all elements of .. In this survey we shall describe results concerning information about G that can be derived by looking either at . or at the complete list of orders of elements of ..
15#
發(fā)表于 2025-3-24 04:44:46 | 只看該作者
16#
發(fā)表于 2025-3-24 08:11:50 | 只看該作者
The Future of Majorana Theory,During most of my mathematical career, I was directly involved in the construction of the Monster group ., proof of its uniqueness, and understanding of its origins and structure.
17#
發(fā)表于 2025-3-24 13:21:47 | 只看該作者
18#
發(fā)表于 2025-3-24 18:45:27 | 只看該作者
Camina Groups, Camina Pairs, and Generalizations,We survey the results regarding Camina groups and Camina pairs. We look at related topics such as Gagola characters, homogeneous induction, anti-central elements, the vanishing-off subgroup, and Camina triples. We also present several of the problems where these results have been applied.
19#
發(fā)表于 2025-3-24 19:51:22 | 只看該作者
20#
發(fā)表于 2025-3-25 01:41:59 | 只看該作者
Character Tables and Sylow Subgroups Revisited,Suppose that . is a finite group. A classical and difficult problem is to determine how much the character table knows about the local structure of . and vice versa.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜鼓县| 富民县| 茌平县| 波密县| 寿阳县| 翁牛特旗| 金门县| 泾阳县| 佳木斯市| 女性| 宁晋县| 金山区| 开鲁县| 佳木斯市| 内黄县| 拜城县| 石景山区| 无极县| 堆龙德庆县| 肥城市| 师宗县| 安达市| 固安县| 边坝县| 象山县| 丘北县| 新余市| 水富县| 古交市| 青阳县| 上蔡县| 随州市| 南川市| 盐池县| 花莲县| 泽普县| 新安县| 怀安县| 延川县| 双牌县| 阿拉善左旗|