找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: deliberate
21#
發(fā)表于 2025-3-25 07:14:22 | 只看該作者
https://doi.org/10.1007/978-3-662-25201-7o nonlinear evolution equations, we pass to the most recent applications to equations in 1+1 and 3+1 space-time dimensions, In particular the proof of existence of global solutions to the coupled Maxwell-Dirac equations is briefly outlined.
22#
發(fā)表于 2025-3-25 07:53:44 | 只看該作者
https://doi.org/10.1007/978-3-662-56080-8 1, 2, 3, arbitrary-dimensional cases as well as to other examples directly and simply connected with the harmonic context. We study their dynamical and kinematical (super)symmetries and their inclusions are mentioned.
23#
發(fā)表于 2025-3-25 14:41:01 | 只看該作者
24#
發(fā)表于 2025-3-25 15:52:27 | 只看該作者
Recent developments in non linear representations and evolution equations,o nonlinear evolution equations, we pass to the most recent applications to equations in 1+1 and 3+1 space-time dimensions, In particular the proof of existence of global solutions to the coupled Maxwell-Dirac equations is briefly outlined.
25#
發(fā)表于 2025-3-25 22:13:07 | 只看該作者
26#
發(fā)表于 2025-3-26 01:15:23 | 只看該作者
Algebraic expressions for classes of generalized 6-, and 9-, symbols for certain Lie groups,Several methods are described for finding formulas for multiplicity-free 6-. and 9-. symbols, including generalizations of Schwinger‘s generating functions. The recent method of Cerkaski for finding a class of 6-. symbols with one multiplicity index is illustrated with an example for Sp(6).
27#
發(fā)表于 2025-3-26 05:00:06 | 只看該作者
Constrained lagrangians in N = 2-superspace formulations for the constant magnetic field system,so-called standard and spin orbit coupling supersymmetrization procedures respectively and deal with chiral-type constraints. Our simple change of variables connecting the two-dimensional harmonic oscillator and the constant magnetic field contexts does also work in these superspace formulations.
28#
發(fā)表于 2025-3-26 10:01:02 | 只看該作者
29#
發(fā)表于 2025-3-26 14:19:02 | 只看該作者
30#
發(fā)表于 2025-3-26 20:18:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
棋牌| 邵武市| 乌恰县| 瑞金市| 桐庐县| 屏边| 陆丰市| 黄龙县| 墨玉县| 砚山县| 涿州市| 齐齐哈尔市| 岗巴县| 台前县| 牡丹江市| 南开区| 临湘市| 武安市| 雷波县| 扎赉特旗| 霸州市| 偃师市| 沛县| 如皋市| 杭州市| 长海县| 嘉鱼县| 青海省| 江油市| 涿鹿县| 鱼台县| 泽库县| 阿荣旗| 泰安市| 连江县| 岳阳市| 朝阳市| 北川| 遂昌县| 长岛县| 临颍县|