找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: fundoplication
11#
發(fā)表于 2025-3-23 11:24:07 | 只看該作者
12#
發(fā)表于 2025-3-23 16:37:13 | 只看該作者
13#
發(fā)表于 2025-3-23 18:39:12 | 只看該作者
Duality theorems in conformal geometry,For conformally flat Riemannian manifolds of dimension n ≥ 3 ,we describe an explicit resolution of the sheaf Θ. of conformal Killing vector fields which is formally self-adjoint, and we deduce a duality theorem for the cohomology of X with values inΘ..
14#
發(fā)表于 2025-3-24 01:29:34 | 只看該作者
15#
發(fā)表于 2025-3-24 04:12:36 | 只看該作者
The DeSitter symmetry of the Dirac equation,The SO(4,1) symmetry of the Dirac equation is constructed. It is realized on the full space of solutions of the Dirac equation. Generalizations and possible physical implications are noted.
16#
發(fā)表于 2025-3-24 07:49:51 | 只看該作者
17#
發(fā)表于 2025-3-24 11:19:26 | 只看該作者
A new look at group orthogonality relations,Group orthogonality relations are presented in various coordinate-free, and possibly new, guises; it is . assumed that the ground field is algebraically closed. One of the more unlikely guises is used to give a basis-free proof of the “generalized Frobenius-Schur criterion” for the Wigner type of a corepresentation.
18#
發(fā)表于 2025-3-24 16:11:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:29 | 只看該作者
,The invariants of the nondegenerate representations of the group of the pseudo — orthogonal matriceThe invariants of the nondegenerate representations of the group of pseudo-orthogonal matrices SO(p,l) are constructed.
20#
發(fā)表于 2025-3-25 02:07:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长泰县| 军事| 建瓯市| 三明市| 临夏市| 丰县| 舟山市| 信阳市| 滦南县| 鸡东县| 霍州市| 孝义市| 定安县| 东方市| 齐齐哈尔市| 苏州市| 长兴县| 开鲁县| 凌云县| 蒙城县| 肇东市| 临泽县| 沙洋县| 穆棱市| 宝兴县| 中牟县| 武夷山市| 元谋县| 全椒县| 融水| 闽清县| 琼海市| 江油市| 汽车| 新建县| 九江县| 如东县| 安丘市| 修武县| 青河县| 廊坊市|