找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 方面
31#
發(fā)表于 2025-3-26 21:42:21 | 只看該作者
32#
發(fā)表于 2025-3-27 02:23:36 | 只看該作者
Global unitsorders. These Picard-groups are invariant under Morita equivalence. There is a map from the automorphism group of orders to their Picard group. The kernel of this map is the group of inner automorphisms.
33#
發(fā)表于 2025-3-27 08:07:42 | 只看該作者
34#
發(fā)表于 2025-3-27 12:54:12 | 只看該作者
35#
發(fā)表于 2025-3-27 15:48:03 | 只看該作者
36#
發(fā)表于 2025-3-27 21:38:31 | 只看該作者
Global unitsorders. These Picard-groups are invariant under Morita equivalence. There is a map from the automorphism group of orders to their Picard group. The kernel of this map is the group of inner automorphisms.
37#
發(fā)表于 2025-3-27 22:37:39 | 只看該作者
Introduction and Review of the Tame Case group Γ, and if .are the rings of algebraic integers in . and . respectively, then what can be said about .as a Γ-module? A complete answer to this would be a description of .as a module over the group ring ., but since in general . need not be free over ., it is more fruitful to restrict scalars a
38#
發(fā)表于 2025-3-28 02:49:55 | 只看該作者
Maria Noonan,Owen Doody,Julie Jomeenbehaviour of corresponding class sums under powers, and collect properties of a finite group determined by its character table. The consequences with respect to the isomorphism problem are the content of the following summarizing result.
39#
發(fā)表于 2025-3-28 07:15:01 | 只看該作者
40#
發(fā)表于 2025-3-28 14:27:02 | 只看該作者
Matshidiso Joyce Taole,Linley Cornishorders. These Picard-groups are invariant under Morita equivalence. There is a map from the automorphism group of orders to their Picard group. The kernel of this map is the group of inner automorphisms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长白| 平顶山市| 邢台县| 荆州市| 满洲里市| 临漳县| 高唐县| 纳雍县| 诸城市| 祁门县| 讷河市| 昭平县| 乐清市| 湟中县| 小金县| 修武县| 霍州市| 绥德县| 阳朔县| 勃利县| 山阴县| 阿尔山市| 台东市| 萝北县| 蒙阴县| 新昌县| 中卫市| 淮滨县| 道真| 金沙县| 察隅县| 容城县| 三河市| 缙云县| 昌宁县| 准格尔旗| 大英县| 盐池县| 津市市| 东光县| 和静县|