找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 方面
31#
發(fā)表于 2025-3-26 21:42:21 | 只看該作者
32#
發(fā)表于 2025-3-27 02:23:36 | 只看該作者
Global unitsorders. These Picard-groups are invariant under Morita equivalence. There is a map from the automorphism group of orders to their Picard group. The kernel of this map is the group of inner automorphisms.
33#
發(fā)表于 2025-3-27 08:07:42 | 只看該作者
34#
發(fā)表于 2025-3-27 12:54:12 | 只看該作者
35#
發(fā)表于 2025-3-27 15:48:03 | 只看該作者
36#
發(fā)表于 2025-3-27 21:38:31 | 只看該作者
Global unitsorders. These Picard-groups are invariant under Morita equivalence. There is a map from the automorphism group of orders to their Picard group. The kernel of this map is the group of inner automorphisms.
37#
發(fā)表于 2025-3-27 22:37:39 | 只看該作者
Introduction and Review of the Tame Case group Γ, and if .are the rings of algebraic integers in . and . respectively, then what can be said about .as a Γ-module? A complete answer to this would be a description of .as a module over the group ring ., but since in general . need not be free over ., it is more fruitful to restrict scalars a
38#
發(fā)表于 2025-3-28 02:49:55 | 只看該作者
Maria Noonan,Owen Doody,Julie Jomeenbehaviour of corresponding class sums under powers, and collect properties of a finite group determined by its character table. The consequences with respect to the isomorphism problem are the content of the following summarizing result.
39#
發(fā)表于 2025-3-28 07:15:01 | 只看該作者
40#
發(fā)表于 2025-3-28 14:27:02 | 只看該作者
Matshidiso Joyce Taole,Linley Cornishorders. These Picard-groups are invariant under Morita equivalence. There is a map from the automorphism group of orders to their Picard group. The kernel of this map is the group of inner automorphisms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东光县| 涞源县| 常熟市| 宾阳县| 山东省| 金寨县| 洪湖市| 乌兰察布市| 东阿县| 青田县| 介休市| 巴彦县| 金阳县| 张家界市| 房山区| 道真| 彭泽县| 汕头市| 嘉禾县| 屏南县| 资源县| 历史| 永年县| 化德县| 辰溪县| 玉屏| 如东县| 澄江县| 泰和县| 专栏| 南京市| 临海市| 沅江市| 密云县| 文登市| 康定县| 曲靖市| 历史| 丽江市| 曲靖市| 遵义市|