找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Taylor
11#
發(fā)表于 2025-3-23 12:46:26 | 只看該作者
12#
發(fā)表于 2025-3-23 16:21:30 | 只看該作者
The Ascription of Intentionality,3,4,5], fine structure analysis of group actions on injective semi-finite factors came into the theory of operator algebras. V. Jones completed a classification of actions of finite groups on an injective II.-factor in his thesis, [13]. A. Ocneanu further supplied an important technical tool, called
13#
發(fā)表于 2025-3-23 18:55:25 | 只看該作者
Perspectives on Individual Differencespresentation ., decompose .) can be considerably harder. For instance, if G is a semisimple Lie group andΓ is a discrete, cocompact subgroup, then the quasi-regular representation of G on L.(ΓG) is known to be a direct sum of irreducibles, each occurring with finite multiplicity, but little is known about which irreducibles appear. (See ↑l6←.)
14#
發(fā)表于 2025-3-24 01:23:14 | 只看該作者
15#
發(fā)表于 2025-3-24 05:22:32 | 只看該作者
16#
發(fā)表于 2025-3-24 09:09:10 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:06 | 只看該作者
Nato Challenges of Modern Society in a well-defined sense explained below. The description relies heavily on the Mackey theory of induced representations, and on the theory of the oscillator representation. This paper is essentially a continuation of ↑H←. Results similar to those described here are valid for other classical Lie groups, and for classical groups over p-adic fields.
18#
發(fā)表于 2025-3-24 15:19:49 | 只看該作者
19#
發(fā)表于 2025-3-24 20:25:55 | 只看該作者
20#
發(fā)表于 2025-3-25 01:19:44 | 只看該作者
Some Homotopy and Shape Calculations for C*-Algbbras,nd under favorable circumstances, any two systems (1.1) with limits isomorphic to A must determine isomorphic diagrams (1.2). In that case the uniquely determined isomorphism class of (1.2) is called the . of A.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
揭西县| 阿巴嘎旗| 包头市| 阜新| 昂仁县| 策勒县| 惠安县| 曲麻莱县| 吴忠市| 正宁县| 曲阳县| 兴文县| 道孚县| 达日县| 尼木县| 高清| 定襄县| 且末县| 楚雄市| 桂阳县| 淮安市| 山阳县| 汶上县| 响水县| 襄樊市| 平乡县| 永福县| 洞头县| 澄迈县| 大埔区| 烟台市| 高陵县| 河西区| 长乐市| 嘉禾县| 乡城县| 田林县| 常宁市| 江油市| 当雄县| 贵阳市|