找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 紀念性
11#
發(fā)表于 2025-3-23 13:25:47 | 只看該作者
12#
發(fā)表于 2025-3-23 14:23:14 | 只看該作者
13#
發(fā)表于 2025-3-23 18:41:49 | 只看該作者
Old and New in Reversible Universes, 2000on and organometallic chemistry. Applications of boron-containing hosts in ionic and molecular recognition, including chiral recognition, as well as selective molecular transport through lipophilic membranes are discussed.
14#
發(fā)表于 2025-3-23 23:59:31 | 只看該作者
,Structure and Bonding in Boron-Containing Macrocycles and Cages — Comparison to Related Structures on and organometallic chemistry. Applications of boron-containing hosts in ionic and molecular recognition, including chiral recognition, as well as selective molecular transport through lipophilic membranes are discussed.
15#
發(fā)表于 2025-3-24 02:24:58 | 只看該作者
Group 13 Chemistry I978-3-540-47808-9Series ISSN 0081-5993 Series E-ISSN 1616-8550
16#
發(fā)表于 2025-3-24 09:43:13 | 只看該作者
https://doi.org/10.1007/978-3-319-54451-9ganometallics: hetero-atomic chelation in coordination site selectivity and heteroaromatic coordination known from porphyrins. This new approach might raise the Group 13 organometallics from their current important but subordinate role as co-catalysts to outstanding catalysts in their own right.
17#
發(fā)表于 2025-3-24 12:45:36 | 只看該作者
18#
發(fā)表于 2025-3-24 17:20:58 | 只看該作者
R. Srinivasanry of canonical transformations and prove Jacobi’s theorem. We present a number of applications to important systems. Then we describe how the Hamilton–Jacobi equations can be used to compute the geodesics on a Riemannian manifold and use this result to give the Hamilton–Jacobi description of the mo
19#
發(fā)表于 2025-3-24 20:14:57 | 只看該作者
Shivcharan Prasad,Ipsita Royungi, animals, and local cultural traditions, plus other key.Natural resources and associated biological diversity provide the basis of livelihood for humans, particularly in rural areas and mountain regions around the world. Over centuries, indigenous peoples, traditional societies and local commun
20#
發(fā)表于 2025-3-25 01:58:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桑植县| 依安县| 寿光市| 敦煌市| 崇文区| 丽江市| 武强县| 徐汇区| 玉环县| 正安县| 隆子县| 贺兰县| 平陆县| 靖州| 泰来县| 略阳县| 安阳县| 淮南市| 九龙城区| 三亚市| 闻喜县| 永福县| 尉氏县| 南汇区| 铜梁县| 灵璧县| 武胜县| 左权县| 恩施市| 肇州县| 光山县| 宣化县| 东阳市| 祁东县| 灵山县| 梁平县| 洪江市| 顺昌县| 洪江市| 青田县| 黑龙江省|