找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Strategy
11#
發(fā)表于 2025-3-23 10:47:45 | 只看該作者
12#
發(fā)表于 2025-3-23 15:33:14 | 只看該作者
Preliminaries,In this chapter we introduce basic objects and fix some of our notation and terminology.
13#
發(fā)表于 2025-3-23 21:53:14 | 只看該作者
14#
發(fā)表于 2025-3-24 00:22:04 | 只看該作者
15#
發(fā)表于 2025-3-24 05:34:54 | 只看該作者
The squeezing theorem,zing theorem. Already proved in [Gr], it is among the first applications of pseudo-holomorphic curves at all. Gromov’s proof of this result is based on an existence result for pseudo-holomorphic curves using methods from global analysis and Fredholm theory. It is far beyond the scope of this book to present these methods.
16#
發(fā)表于 2025-3-24 06:33:41 | 只看該作者
17#
發(fā)表于 2025-3-24 14:44:04 | 只看該作者
18#
發(fā)表于 2025-3-24 16:24:32 | 只看該作者
Hyperbolic surfaces,g the pairs of pants decomposition, one gets, roughly speaking, a parametrization of the space of hyperbolic structures on such a surface which coincides with the space of its complex structures. The thick-thin decomposition gives a classification of the thin parts of a hyperbolic surface, which are
19#
發(fā)表于 2025-3-24 22:59:31 | 只看該作者
The squeezing theorem,zing theorem. Already proved in [Gr], it is among the first applications of pseudo-holomorphic curves at all. Gromov’s proof of this result is based on an existence result for pseudo-holomorphic curves using methods from global analysis and Fredholm theory. It is far beyond the scope of this book to
20#
發(fā)表于 2025-3-25 02:29:02 | 只看該作者
,Das Konfliktgespr?ch: Wie l?sen wir es?,Gromov-Schwarz lemma is a generalization of the classical Schwarz lemma from complex analysis which states that for any holomorphic map . from the open unit disc in ? into itself with . (0). 0 its derivative at 0 is bounded from above by one. For any compact .-holomorphic curve . : . → (.) in a comp
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铁岭市| 泸定县| 和林格尔县| 丹凤县| 延边| 铜陵市| 南涧| 玉环县| 台东县| 海阳市| 会同县| 佳木斯市| 台州市| 营山县| 南京市| 天祝| 微博| 谷城县| 永吉县| 英超| 夏津县| 称多县| 郓城县| 万盛区| 科技| 渝北区| 连州市| 扎鲁特旗| 长寿区| 衡水市| 贵溪市| 桐柏县| 和田市| 安平县| 镶黄旗| 永平县| 临澧县| 泗水县| 南昌县| 平潭县| 沾化县|