找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Scuttle
11#
發(fā)表于 2025-3-23 12:13:10 | 只看該作者
12#
發(fā)表于 2025-3-23 16:40:09 | 只看該作者
Stability of Inertial Manifolds equation. More precisely, we use the Gromov-Hausdorff distances between two inertial manifolds and two dynamical systems to consider the continuous dependence of the inertial manifolds and the stability of the dynamical systems on inertial manifolds induced by reaction-diffusion equations under perturbations of the domain and equation.
13#
發(fā)表于 2025-3-23 18:13:42 | 只看該作者
14#
發(fā)表于 2025-3-24 00:49:29 | 只看該作者
Praxiserfahrungen und Reflexionen,When simulating a given system, it is important to know under which conditions approximated trajectories may be tracked by real ones. If this is the case for all approximated trajectories, then we say that the system has the ..
15#
發(fā)表于 2025-3-24 02:37:02 | 只看該作者
Partnerschaften von NGOs und UnternehmenChafee and Infante (Appl Anal 4:17–37, 1974) introduced the equation (nowadays called .) . where .?>?0 and . is a .. function such that . Moreover, we assume here that . satisfies the dissipativity condition, namely,
16#
發(fā)表于 2025-3-24 09:44:51 | 只看該作者
17#
發(fā)表于 2025-3-24 13:59:36 | 只看該作者
Shadowing from the Gromov-Hausdorff ViewpointWhen simulating a given system, it is important to know under which conditions approximated trajectories may be tracked by real ones. If this is the case for all approximated trajectories, then we say that the system has the ..
18#
發(fā)表于 2025-3-24 18:46:39 | 只看該作者
19#
發(fā)表于 2025-3-24 19:31:34 | 只看該作者
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs978-3-031-12031-2Series ISSN 1660-8046 Series E-ISSN 1660-8054
20#
發(fā)表于 2025-3-25 00:42:52 | 只看該作者
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 06:02
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台北县| 江永县| 阿图什市| 集安市| 筠连县| 桃江县| 临潭县| 河曲县| 阳东县| 聂拉木县| 浦城县| 西乡县| 苍南县| 平江县| 丹巴县| 昌黎县| 平阳县| 武宁县| 建瓯市| 嘉禾县| 新余市| 西青区| 牙克石市| 基隆市| 成安县| 青铜峡市| 玉树县| 罗城| 康乐县| 新津县| 海南省| 华容县| 新巴尔虎左旗| 金堂县| 凤阳县| 环江| 桃源县| 嘉善县| 乐亭县| 南岸区| 鲁山县|