找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Scuttle
11#
發(fā)表于 2025-3-23 12:13:10 | 只看該作者
12#
發(fā)表于 2025-3-23 16:40:09 | 只看該作者
Stability of Inertial Manifolds equation. More precisely, we use the Gromov-Hausdorff distances between two inertial manifolds and two dynamical systems to consider the continuous dependence of the inertial manifolds and the stability of the dynamical systems on inertial manifolds induced by reaction-diffusion equations under perturbations of the domain and equation.
13#
發(fā)表于 2025-3-23 18:13:42 | 只看該作者
14#
發(fā)表于 2025-3-24 00:49:29 | 只看該作者
Praxiserfahrungen und Reflexionen,When simulating a given system, it is important to know under which conditions approximated trajectories may be tracked by real ones. If this is the case for all approximated trajectories, then we say that the system has the ..
15#
發(fā)表于 2025-3-24 02:37:02 | 只看該作者
Partnerschaften von NGOs und UnternehmenChafee and Infante (Appl Anal 4:17–37, 1974) introduced the equation (nowadays called .) . where .?>?0 and . is a .. function such that . Moreover, we assume here that . satisfies the dissipativity condition, namely,
16#
發(fā)表于 2025-3-24 09:44:51 | 只看該作者
17#
發(fā)表于 2025-3-24 13:59:36 | 只看該作者
Shadowing from the Gromov-Hausdorff ViewpointWhen simulating a given system, it is important to know under which conditions approximated trajectories may be tracked by real ones. If this is the case for all approximated trajectories, then we say that the system has the ..
18#
發(fā)表于 2025-3-24 18:46:39 | 只看該作者
19#
發(fā)表于 2025-3-24 19:31:34 | 只看該作者
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs978-3-031-12031-2Series ISSN 1660-8046 Series E-ISSN 1660-8054
20#
發(fā)表于 2025-3-25 00:42:52 | 只看該作者
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 06:02
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐清市| 辽中县| 怀仁县| 迭部县| 永济市| 东方市| 呼伦贝尔市| 唐河县| 巴林左旗| 蒲江县| 泽库县| 达州市| 石景山区| 彰武县| 盖州市| 托里县| 新晃| 永福县| 巫溪县| 平湖市| 白水县| 玉树县| 当阳市| 兰溪市| 府谷县| 秦皇岛市| 崇信县| 灵丘县| 枣庄市| 邯郸市| 武城县| 清原| 牡丹江市| 邹平县| 孝昌县| 屯昌县| 韶山市| 积石山| 教育| 瑞昌市| 江西省|