找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Scuttle
11#
發(fā)表于 2025-3-23 12:13:10 | 只看該作者
12#
發(fā)表于 2025-3-23 16:40:09 | 只看該作者
Stability of Inertial Manifolds equation. More precisely, we use the Gromov-Hausdorff distances between two inertial manifolds and two dynamical systems to consider the continuous dependence of the inertial manifolds and the stability of the dynamical systems on inertial manifolds induced by reaction-diffusion equations under perturbations of the domain and equation.
13#
發(fā)表于 2025-3-23 18:13:42 | 只看該作者
14#
發(fā)表于 2025-3-24 00:49:29 | 只看該作者
Praxiserfahrungen und Reflexionen,When simulating a given system, it is important to know under which conditions approximated trajectories may be tracked by real ones. If this is the case for all approximated trajectories, then we say that the system has the ..
15#
發(fā)表于 2025-3-24 02:37:02 | 只看該作者
Partnerschaften von NGOs und UnternehmenChafee and Infante (Appl Anal 4:17–37, 1974) introduced the equation (nowadays called .) . where .?>?0 and . is a .. function such that . Moreover, we assume here that . satisfies the dissipativity condition, namely,
16#
發(fā)表于 2025-3-24 09:44:51 | 只看該作者
17#
發(fā)表于 2025-3-24 13:59:36 | 只看該作者
Shadowing from the Gromov-Hausdorff ViewpointWhen simulating a given system, it is important to know under which conditions approximated trajectories may be tracked by real ones. If this is the case for all approximated trajectories, then we say that the system has the ..
18#
發(fā)表于 2025-3-24 18:46:39 | 只看該作者
19#
發(fā)表于 2025-3-24 19:31:34 | 只看該作者
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs978-3-031-12031-2Series ISSN 1660-8046 Series E-ISSN 1660-8054
20#
發(fā)表于 2025-3-25 00:42:52 | 只看該作者
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新丰县| 定结县| 西林县| 乡宁县| 景德镇市| 文成县| 五大连池市| 息烽县| 易门县| 石柱| 漠河县| 修文县| 菏泽市| 达尔| 那曲县| 吉林省| 呼图壁县| 花垣县| 凯里市| 苏州市| 洛南县| 宁远县| 乾安县| 威信县| 丰宁| 缙云县| 易门县| 鄂托克前旗| 湘潭县| 库尔勒市| 婺源县| 盐边县| 石阡县| 克山县| 乐山市| 大新县| 凤庆县| 乌拉特中旗| 新蔡县| 琼海市| 于都县|