找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 能干
11#
發(fā)表于 2025-3-23 09:58:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:26 | 只看該作者
13#
發(fā)表于 2025-3-23 19:54:57 | 只看該作者
Hans Vorl?nder,Maik Herold,Steven Sch?llerd quality: smoothness, orthogonality, regularity, aspect ratio, adaptivity, etc. By the minimization of a combination of these functionals, a user can define a compromise grid with the desired properties. The chapter discusses a new variational approach for generating harmonic maps through the minim
14#
發(fā)表于 2025-3-24 00:51:16 | 只看該作者
Amer Al Homssi,Lisa Baumann Kreuzigero includes an expansion of the method by introducing general control metrics in the physical geometry. The control metrics provide efficient and straightforwardly defined conditions for various types of grid adaptation, particularly grid clustering according to given function values and/or gradients
15#
發(fā)表于 2025-3-24 05:32:57 | 只看該作者
16#
發(fā)表于 2025-3-24 09:32:44 | 只看該作者
17#
發(fā)表于 2025-3-24 12:20:56 | 只看該作者
Stretching Method, application of special nonuniform stretching coordinates in regions of large variation of the solution. The chapter ends with the description of a procedure to generate intermediate coordinate transformations which are suitable for smoothing both exponential and power layers.
18#
發(fā)表于 2025-3-24 18:00:15 | 只看該作者
19#
發(fā)表于 2025-3-24 21:23:16 | 只看該作者
20#
發(fā)表于 2025-3-25 01:04:15 | 只看該作者
Shane Byrne,John Bates,Jennifer M. B. Robsonetching coordinate transformations for singular layers described in Chap.?4. The chapter ends with a description of a procedure for generating triangular, tetrahedral, or prismatic grids through the method of transfinite interpolation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岱山县| 沁源县| 河池市| 靖宇县| 广河县| 利辛县| 浮山县| 博野县| 宜都市| 厦门市| 青海省| 晴隆县| 合川市| 南乐县| 高台县| 大邑县| 秦皇岛市| 措美县| 南丹县| 乌恰县| 岱山县| 长寿区| 同仁县| 南丰县| 昌都县| 朔州市| 台州市| 稻城县| 梅河口市| 彭州市| 紫云| 家居| 东丽区| 鄂托克前旗| 南京市| 信丰县| 灵璧县| 自贡市| 衡山县| 仁寿县| 和平区|