找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Retina
11#
發(fā)表于 2025-3-23 11:56:59 | 只看該作者
Orthotrope Kreisplattenear. Im Falle der plastischen Anisotropie gilt das im allgemeinen nicht. Unter der Annahme, da? die Hauptmomentenrichtungen und Orthotropieachsen übereinstimmen, ist jedoch die Flie?bedingung bei plastischer Orthotropie stückweise linear.
12#
發(fā)表于 2025-3-23 14:23:59 | 只看該作者
N?herungsweise L?sung der Probleme der Grenztragf?higkeitsberechnungn befriedigen zugleich die S?tze für die obere und untere Eingrenzung der Grenzlasten. Die Klasse der Probleme, für die vollst?ndige L?sungen gefunden werden k?nnen, ist sehr begrenzt. Wie bereits dargelegt, ist es zur L?sung des Grenztragf?higkeitsproblems einer Platte im allgemeinen erforderlich,
13#
發(fā)表于 2025-3-23 18:14:46 | 只看該作者
Grundzüge der Flie?gelenklinien- (Bruchlinien-) Theoriegbewehrung eingeleitet. Bei Erreichen der Streckgrenze des Stahles ?ffnet sich ein Ri? schnell und der Bruch wird durch sekund?re Zerst?rung der sich rapide verkleinernden Betondruckzone herbeigeführt, ohne da? bei Stahl mit gro?em Dehnverm?gen die Bewehrung rei?t. Es bilden sich gro?e Form?nderunge
14#
發(fā)表于 2025-3-24 00:10:19 | 只看該作者
Flie?gelenklinienl?sungen für Platten unter verteilter Belastungrsucht worden. Die Bruchfigur entspricht der des in Abschn. 7.1.2.3 behandelten Falles. Die Flie?gelenklinien verlaufen radial von der Mitte der Platte zu den Mitten der Randabschnitte zwischen den Punktstützen (Abb. 8.1/la).
15#
發(fā)表于 2025-3-24 05:40:09 | 只看該作者
16#
發(fā)表于 2025-3-24 08:16:54 | 只看該作者
17#
發(fā)表于 2025-3-24 13:34:21 | 只看該作者
https://doi.org/10.1007/978-94-009-5729-9 die Hauptkrümmungen der Biegefl?che bekannt. Die Hauptrichtungen bilden ein Netz von konzentrischen Kreisen und sie durchschneidenden Strahlen mit dem Ursprung in Plattenmitte. In einem polaren Koordinatensystem ist die Biegung von Kreisplatten ein mathematisch eindimensionales Problem. Das bedeute
18#
發(fā)表于 2025-3-24 17:24:21 | 只看該作者
19#
發(fā)表于 2025-3-24 21:56:00 | 只看該作者
20#
發(fā)表于 2025-3-25 02:39:08 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 08:47
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汉川市| 永吉县| 临洮县| 恩平市| 开化县| 改则县| 定结县| 渑池县| 武城县| 合山市| 新宾| 通城县| 绥宁县| 康定县| 苍溪县| 昌黎县| 巴林左旗| 福鼎市| 安新县| 忻城县| 镇康县| 台东市| 镇赉县| 龙泉市| 曲沃县| 金塔县| 广昌县| 沾益县| 蒙自县| 铜鼓县| 寿光市| 沂水县| 承德市| 波密县| 凤城市| 仲巴县| 印江| 弥渡县| 翁源县| 屏东县| 介休市|