找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: odometer
11#
發(fā)表于 2025-3-23 09:44:20 | 只看該作者
12#
發(fā)表于 2025-3-23 14:27:11 | 只看該作者
13#
發(fā)表于 2025-3-23 21:46:14 | 只看該作者
Green‘s Functions in Quantum Physics978-3-540-28841-1Series ISSN 0171-1873 Series E-ISSN 2197-4179
14#
發(fā)表于 2025-3-23 23:34:45 | 只看該作者
https://doi.org/10.1007/978-3-663-14577-6In this chapter, the time-independent Green’s functions are defined, their main properties are presented, methods for their calculation are briefly discussed, and their use in problems of physical interest is summarized.
15#
發(fā)表于 2025-3-24 05:54:15 | 只看該作者
https://doi.org/10.1007/978-3-663-08810-3The Green’s functions corresponding to linear partial differential equations of first and second order in time are defined; their main properties and uses are presented.
16#
發(fā)表于 2025-3-24 08:07:32 | 只看該作者
17#
發(fā)表于 2025-3-24 10:49:54 | 只看該作者
18#
發(fā)表于 2025-3-24 15:21:38 | 只看該作者
Time-Dependent Green’s FunctionsThe Green’s functions corresponding to linear partial differential equations of first and second order in time are defined; their main properties and uses are presented.
19#
發(fā)表于 2025-3-24 21:55:23 | 只看該作者
Physical Significance of ,. Application to the Free-Particle CaseThe general theory developed in Chap. 1 can be applied directly to the time-independent one-particle Schr?dinger equation by making the substitutions .(.)→?(.), λ → ., where ?(.) is the Hamiltonian. The formalism presented in Chap. 2, Sects. 2.1,2.2 is applicable to the time-dependent one-particle Schr?dinger equation.
20#
發(fā)表于 2025-3-25 02:02:22 | 只看該作者
Auftragsplanung und -steuerung,nctions like the conductivity. The poles of an appropriate analytic continuation of . in the complex .-plane can be interpreted as the energy (the real part of the pole) and the inverse lifetime (the imaginary part of the pole) of quasiparticles. The latter are entities that allow us to map an interacting system to a noninteracting one.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
土默特右旗| 元氏县| 泽普县| 兴仁县| 利辛县| 虞城县| 新乡市| 虎林市| 阳城县| 大名县| 富平县| 肇庆市| 开鲁县| 赫章县| 肥城市| 白河县| 辽阳县| 京山县| 陆良县| 朝阳区| 衡阳市| 浦县| 芷江| 高尔夫| 和田市| 临泽县| 宾川县| 连山| 富顺县| 双江| 思南县| 秦安县| 昌乐县| 长泰县| 阿荣旗| 武定县| 湄潭县| 乌拉特后旗| 肥乡县| 定南县| 冀州市|