找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 叛亂分子
51#
發(fā)表于 2025-3-30 11:24:04 | 只看該作者
Modelling and Simulation of Speed Guidance of Multi-Intersection in a Connected Vehicle Environmentvehicles’ delay or stopping time in the environment of connected vehicles. Using the vehicle’s position, speed, and real-time traffic signal information (signal light’s color and its’ remaining time) obtained by communication of infrastructure to connected vehicle, speed advisory system can produce
52#
發(fā)表于 2025-3-30 13:51:38 | 只看該作者
Pattern Mining and Predictive Inference on Short-Term Weather and Collision Time Series Data,onal highway network, are highly random and fiercely fluctuated. The descriptive and inferential analyses for this type of short-term collision time series data, abbreviated as SCTS data in this paper, are still not well-established yet. This paper is to tackle this issue by a newly emerging approac
53#
發(fā)表于 2025-3-30 16:31:24 | 只看該作者
54#
發(fā)表于 2025-3-30 22:29:56 | 只看該作者
55#
發(fā)表于 2025-3-31 03:01:53 | 只看該作者
56#
發(fā)表于 2025-3-31 06:57:05 | 只看該作者
An Agent-Based Cellular Automata Model for Urban Road Traffic Flow Considering Connected and Automaded period, urban roads will be in a mixed traffic flow scene where CAVs and human-driven vehicles (HDVs) coexist. This paper uses an agent-based cellular automata model to establish a micro-traffic simulation framework for urban roads, called the ABCA-MS model. Considering the characteristics of th
57#
發(fā)表于 2025-3-31 12:41:15 | 只看該作者
58#
發(fā)表于 2025-3-31 14:27:37 | 只看該作者
Research on Investment Benefits Valuation Methods for Information Construction of Integrated Passento improve the integration level of regional transportation and the quality of passenger travel service. However, Our country is currently in a period of economic structural adjustment, financial constraints, limited financial support for the informatization construction of integrated passenger tran
59#
發(fā)表于 2025-3-31 20:03:55 | 只看該作者
Learning Individual Travel Pattern by Using Large-Scale Mobile Location Data with Deep Learning,tween mobile location data and individual travel patterns. This paper proposes a novel deep learning framework to extract individual travel patterns by using large-scale mobile location data. The proposed framework includes methods for extracting origin and destination points based on spatiotemporal
60#
發(fā)表于 2025-3-31 23:30:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
星子县| 和顺县| 汶上县| 新田县| 六安市| 砚山县| 深圳市| 兴城市| 克山县| 菏泽市| 清远市| 当雄县| 江陵县| 福贡县| 浦东新区| 泾阳县| 龙江县| 尤溪县| 拉孜县| 高邑县| 永善县| 五寨县| 高青县| 黔西县| 延吉市| 建始县| 榆中县| 新疆| 海盐县| 自贡市| 桑日县| 兰州市| 石棉县| 合水县| 哈巴河县| 阳江市| 资中县| 东平县| 大同市| 芜湖县| 海林市|