找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 人工合成
21#
發(fā)表于 2025-3-25 05:10:21 | 只看該作者
22#
發(fā)表于 2025-3-25 10:05:10 | 只看該作者
23#
發(fā)表于 2025-3-25 14:59:36 | 只看該作者
Finanzinnovationen am Finanzplatz ParisIn this chapter we study the class of local poset greedoids. Their name is motivated by the fact that their restrictions to feasible sets are poset antimatroids. These greedoids have the interval property. Local poset greedoids cover a broad range of examples: directed and undirected branchings, poset antimatroids and polymatroid greedoids.
24#
發(fā)表于 2025-3-25 19:51:56 | 只看該作者
,Abstract Convexity — Antimatroids,If we abstract the combinatorial properties of convexity in a manner similar to the abstraction of linear dependence in matroid theory, we obtain antimatroids. Interest in these structures has its sources in different fields of mathematics.
25#
發(fā)表于 2025-3-25 21:19:58 | 只看該作者
26#
發(fā)表于 2025-3-26 00:09:47 | 只看該作者
Structural Properties,We would like to develop the basic machinery of greedoid theory. Some basic notions like rank, closure and (to a certain extent) minors can be introduced by extending the appropriate notions from matroids, while some others will be more specific for greedoids.
27#
發(fā)表于 2025-3-26 06:39:35 | 只看該作者
Further Structural Properties,We continue to develop some basic tools for the study of the structure of greedoids. We relate greedoids to lattices and extend the notion of connectivity to greedoids.
28#
發(fā)表于 2025-3-26 11:13:32 | 只看該作者
Local Poset Greedoids,In this chapter we study the class of local poset greedoids. Their name is motivated by the fact that their restrictions to feasible sets are poset antimatroids. These greedoids have the interval property. Local poset greedoids cover a broad range of examples: directed and undirected branchings, poset antimatroids and polymatroid greedoids.
29#
發(fā)表于 2025-3-26 14:05:58 | 只看該作者
30#
發(fā)表于 2025-3-26 18:15:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄梅县| 汕尾市| 衡南县| 镇雄县| 错那县| 中方县| 本溪市| 贵阳市| 徐州市| 武山县| 垦利县| 高台县| 通化市| 商城县| 石棉县| 凤翔县| 高尔夫| 林西县| 磐石市| 黄浦区| 梁山县| 平和县| 肥东县| 闻喜县| 龙口市| 乌拉特后旗| 哈巴河县| 都兰县| 康定县| 镇平县| 商河县| 乌兰察布市| 娄底市| 凌源市| 旬邑县| 海阳市| 永登县| 梅州市| 科技| 遂昌县| 屏山县|