找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: breath-focus
41#
發(fā)表于 2025-3-28 14:41:39 | 只看該作者
42#
發(fā)表于 2025-3-28 19:54:12 | 只看該作者
43#
發(fā)表于 2025-3-28 23:27:41 | 只看該作者
Algorithms and Complexity, is easy to verify for any given graph. But how can we really find an Euler tour in an Eulerian graph? The proof of Theorem 1.3.1 not only guarantees that such a tour exists, but actually contains a hint how to construct such a tour. We want to convert this hint into a general method for constructin
44#
發(fā)表于 2025-3-29 06:15:27 | 只看該作者
Shortest Paths,e German motorway system in the official guide ., the railroad or bus lines in some public transportation system, and the network of routes an airline offers are routinely represented by graphs. Therefore it is obviously of great practical interest to study paths in such graphs. In particular, we of
45#
發(fā)表于 2025-3-29 09:47:59 | 只看該作者
Spanning Trees,f trees, we then present another way of determining the number of trees on . vertices which actually applies more generally: it allows us to compute the number of spanning trees in any given connected graph. The major part of this chapter is devoted to a network optimization problem, namely to findi
46#
發(fā)表于 2025-3-29 11:23:54 | 只看該作者
47#
發(fā)表于 2025-3-29 19:20:21 | 只看該作者
Flows,network might model a system of pipelines, a water supply system, or a system of roads. With its many applications, the theory of flows is one of the most important parts of combinatorial optimization. In Chapter 7 we will encounter several applications of the theory of flows within combinatorics, a
48#
發(fā)表于 2025-3-29 20:20:38 | 只看該作者
Combinatorial Applications,sal theory can be developed from the theory of flows on networks; this approach was first suggested in the book by Ford and Fulkerson [FoFu62] and is also used in the survey [Jun86]. Compared with the usual approach [Mir71b] of taking Philip Hall’s marriage theorem [Hal35] – which we will treat in S
49#
發(fā)表于 2025-3-30 00:34:04 | 只看該作者
Connectivity and Depth First Search,connected components of a graph: breadth first search. In the present chapter, we mainly treat algorithmic questions concerning .-connectivity and strong connectivity. To this end, we introduce a further important strategy for searching graphs and digraphs (besides BFS), namely .. In addition, we pr
50#
發(fā)表于 2025-3-30 04:14:24 | 只看該作者
Colorings,the theorems of Brooks on vertex colorings and the theorem of Vizing on edge colorings. As an aside, we explain the relationship between colorings and partial orderings, and briefly discuss perfect graphs. Moreover, we consider edge colorings of Cayley graphs; these are graphs which are defined usin
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三明市| 桓台县| 灵石县| 阿巴嘎旗| 南靖县| 汉川市| 洛川县| 苏尼特右旗| 海宁市| 清徐县| 山阴县| 和田市| 乌拉特前旗| 襄樊市| 蒙城县| 三江| 兴业县| 文昌市| 桦南县| 聂荣县| 静安区| 韩城市| 雷州市| 仙居县| 封开县| 鄂温| 光泽县| 无棣县| 台东市| 郴州市| 博湖县| 调兵山市| 湄潭县| 新河县| 宝应县| 巴彦县| 汤阴县| 虞城县| 杨浦区| 玛多县| 屯门区|